菌物学报 ›› 2021, Vol. 40 ›› Issue (10): 2833-2842.doi: 10.13346/j.mycosystema.210268

• 研究论文 • 上一篇    下一篇

蓝光影响新蚜虫疠霉分生孢子弹射潜力的室内评估

金武,董志超,陈春()   

  1. 中国计量大学生命科学学院 浙江 杭州 310018
  • 收稿日期:2021-07-14 接受日期:2021-08-05 出版日期:2021-10-22 发布日期:2021-11-05
  • 通讯作者: 陈春 E-mail:aspring@cjlu.edu.cn
  • 基金资助:
    浙江省自然科学基金(LY18C140002);国家自然科学基金(31461143030)

Laboratory evaluation of the blue light effect on the ejection potential of Pandora neoaphidis conidia

JIN Wu,DONG Zhi-Chao,CHEN Chun()   

  1. College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
  • Received:2021-07-14 Accepted:2021-08-05 Online:2021-10-22 Published:2021-11-05
  • Contact: Chun CHEN E-mail:aspring@cjlu.edu.cn
  • Supported by:
    Zhejiang Natural Science Foundation(LY18C140002);National Natural Science Foundation of China(31461143030)

摘要:

新蚜虫疠霉Pandora neoaphidis是虫霉菌亚门Entomophthoromycotina虫霉目Entomophthorales的代表菌,是世界上流行最广的蚜科专化性病原真菌。其主动弹射分生孢子的能力是引发高强度流行病控制蚜虫种群的关键原因。本研究以新蚜虫疠霉菌丝制备的弹孢胶囊(模拟感病蚜尸)为研究对象,在室内对其在蓝光照射和黑暗条件下的产孢量和分生孢子弹射距离进行了测量;同时利用高速显微摄像技术对弹孢胶囊的分生孢子弹射进行了拍摄观察和软件视频分析,利用MATLAB软件分析图像视频并进行了模型构建。结果表明:新蚜虫疠霉菌丝胶囊经蓝光照射处理后弹射出来的分生孢子数量和孢子弹射速度均显著高于黑暗条件下的处理(P<0.05);分析高速显微拍摄视频计算所得的孢子弹射初始速度从114mm/s到2.07m/s不等,速度在弹射后期会受到空气阻力的影响而急速下降;采用Stokes模型进行预测的结果显示其分生孢子的弹射路径与实际路径拟合度较高(R2=0.8941)。综上,本研究结果为深入理解新蚜虫疠霉弹射相关的流行扩散模型和生物学适态机制提供了基础数据。

关键词: 新蚜虫疠霉, 弹射, 高速显微摄像技术, 蓝光

Abstract:

Pandora neoaphidis (Entomophthorales, Entomophthoromycotina) is a representative and the most obligate pathogenic fungus on aphids worldwide. It can actively eject conidia which cause high-intensity epidemics, and the result is that it has become a key factor in the natural control of aphid populations. In this study, the microcapsule prepared by the mycelia of P. neoaphidis was used as simulated infected aphid cadaver. The sporulation capability and the conidial ejection distance of the spores under blue light irradiation and dark conditions were measured indoors. The spores ejected from microcapsules were traced by high-speed micro-camera technology and their ejection data were measured through captured videos with i-SPEED Suit software. MATLAB software was used to analyze the image and video and build the model. Results showed that the number of conidia and the velocity of spore ejection from the P. neoaphidis mycelium microcapsules treated with blue light irradiation were significantly higher than those under dark conditions (P<0.05). The initial ejection velocity of the spores measured by high-speed microscopy video ranges from 114mm/s to 2.07m/s. Subsequently, the velocity decelerates rapidly due to the influence of air resistance at the end of the ejection. The prediction data using the Stokes model showed that the ejection trajectory of the conidia is fit well to the actual trajectory (R2=0.8941). The results provide basic data for in-depth understanding of the epidemic spread model and the biological fitness mechanism related to the spore ejection of P. neoaphidis.

Key words: Pandora neoaphidis, ejection, high-speed micro-camera technology, blue light