[1] 李永武,葛应兰. 草坪杂草的主要种类,发生特点与综合防除[J]. 河南农业,2014(10):47-48 [2] 赵娜,徐庆国,苏鹏,等. 7个暖季型草坪草品种对低温胁迫的抗性差异研究[J]. 草地学报,2020,28(2):375-382 [3] 赵艳岭,刘志强,邢红华,等. 绿地草坪的管理与养护[J]. 河南科技:上半月,2007(9):65-66 [4] 曹晓会. 草坪杂草的危害及其防治[J]. 现代园艺,2017(11):137-138 [5] 泰尔格力,蔡金宏,崔凤超,等. 野牛草草坪除草剂安全施用策略[J]. 草地学报,2021,29(9):1865-1876 [6] 束放,熊延坤,韩梅. 2015年我国农药生产与使用概况[J]. 农药科学与管理,2016(7):1-6 [7] 吴向辉. 农业部首次公布化肥,农药利用率数据[J]. 江西农业,2015(12):48 [8] 郭利京,王颖. 我国水稻生产中农药过量施用研究:基于社会和私人利益最大化的视角[J]. 生态与农村环境学报,2018,34(5):401-407 [9] 陈海涛,丁伟,许安定,等. 烟田农药减量增效施药技术的关键因素分析[J]. 江苏农业科学,2012(11):125-127 [10] 毛文华,张银桥,王辉,等. 杂草信息实时获取技术与设备研究进展[J]. 农业机械学报,2013,44(1):190-195 [11] DAI X,XU Y,ZHENG J,et al. Analysis of the variability of pesticide concentration downstream of inline mixers for direct nozzle injection systems[J]. Biosystems Engineering,2019(180):59-69 [12] 金小俊,陈勇,孙艳霞. 农田杂草识别方法研究进展[J]. 农机化研究,2011,33(07):23-7,33 [13] HAMUDA E,GLAVIN M,JONES E. A survey of image processing techniques for plant extraction and segmentation in the field[J]. Computers and Electronics in Agriculture,2016(125):184-199 [14] 韩万强,靳瑰丽,岳永寰,等. 基于高光谱成像技术的伊犁绢蒿荒漠草地主要植物识别参数的筛选[J]. 草地学报,2020,28(4):1153-1163 [15] 仇裕淇,黄振楠,阮昭,等. 机器视觉技术在农业生产智能化中的应用综述[J]. 机械研究与应用,2019,32(02):202-206 [16] WANG A,ZHANG W,WEI X. A review on weed detection using ground-based machine vision and image processing techniques[J]. Computers and Electronics in Agriculture,2019(158):226-240 [17] JORDAN M I,MITCHELL T M. Machine learning:Trends,perspectives,and prospects[J]. Science,2015,349(6245):255-260 [18] GU J,WANG Z,KUEN J,et al. Recent advances in convolutional neural networks[J]. Pattern Recognition,2018(77):354-377 [19] SCHMIDHUBER J. Deep learning in neural networks:An overview[J]. Neural Networks,2015(61):85-117 [20] SHI J,LI Z,ZHU T,et al. Defect detection of industry wood veneer based on NAS and multi-channel mask R-CNN[J]. Sensors,2020,20(16):4398 [21] YU Y,LIU Y,CHEN J,et al. Detection Method for Bolted Connection Looseness at Small Angles of Timber Structures based on Deep Learning[J]. Sensors,2021,21(9):3106 [22] 王璨,武新慧,张燕青,等. 基于双注意力语义分割网络的田间苗期玉米识别与分割[J]. 农业工程学报,2021,37(9):211-221 [23] 樊湘鹏,周建平,许燕,等. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报,2021,52(5):26-34 [24] OSORIO K,PUERTO A,PEDRAZA C,et al. A Deep Learning Approach for Weed Detection in Lettuce Crops Using Multispectral Images[J]. AgriEngineering,2020,2(3):471-488 [25] YU J,SCHUMANN A W,CAO Z,et al. Weed Detection in Perennial Ryegrass With Deep Learning Convolutional Neural Network[J]. Frontiers in plant science,2019(10):1422 [26] YU J,SCHUMANN A W,SHARPE S M,et al. Detection of grassy weeds in bermudagrass with deep convolutional neural networks[J]. Weed Science,2020,68(5):545-552 [27] YU J,SHARPE S M,SCHUMANN A W,et al. Deep learning for image-based weed detection in turfgrass[J]. European Journal of Agronomy,2019(104):78-84 [28] YU J,SHARPE S M,SCHUMANN A W,et al. Detection of broadleaf weeds growing in turfgrass with convolutional neural networks[J]. Pest management science,2019,75(8):2211-2218 [29] 李春明,逯杉婷,远松灵,等. 基于Faster R-CNN的除草机器人杂草识别算法[J]. 中国农机化学报,2019,40(12):171-176 [30] PASZKE A,GROSS S,MASSA F,et al. Pytorch:An imperative style,high-performance deep learning library[J]. Advances in neural information processing systems,2019(32):8026-8037 [31] 舒娜,刘波,林伟伟,等. 分布式机器学习平台与算法综述[J]. 计算机科学,2019,46(3):9-18 [32] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:14091556,2014 [33] SZEGEDY C,LIU W,JIA Y,et al. Going deeper with convolutions[C]//proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition,2015,San Juan,PR,USA [34] ZHANG X,ZHOU X,LIN M,et al. Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]//proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition,San Juan,PR,USA,2018 [35] 马志艳,朱熠,杨磊. 基于视觉的苗期作物株间除草关键技术研究现状[J]. 中国农机化学报,2020,41(02):32-38 [36] BARBEDO J G A,KOENIGKAN L V,SANTOS T T,et al. A study on the detection of cattle in UAV images using deep learning[J]. Sensors,2019,19(24):5436 [37] BIANCO S,CADENE R,CELONA L,et al. Benchmark analysis of representative deep neural network architectures[J]. IEEE Access,2018(6):64270 [38] LEE R B. Realtime MPEG video via software decompression on a PA-RISC processor[C]//proceedings of the Digest of Papers COMPCON'95 Technologies for the Information Superhighway,San Jose,California,USA,1995 |