[1] 赵祥, 董宽虎, 张垚, 等. 达乌里胡枝子根解剖结构与其抗旱性的关系[J]. 草地学报, 2011, 19(1):13-19 [2] 蒯晓妍, 邢鹏飞, 张晓琳, 等. 短期放牧强度对半干旱草地植物群落多样性和生产力的影响[J].草地学报, 2018, 26(6):1283-1289 [3] 徐小蕙, 刁华杰, 覃楚仪, 等. 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应[J]. 植物生态学报, 2021, 45(1):85-95 [4] 朱永官, 段桂兰, 陈保冬, 等. 土壤-微生物-植物系统中矿物风化与元素循环[J]. 中国科学:地球科学, 2014, 44(6):1107-1116 [5] DIVITO G A, SADRAS V O. How do Phosphorus, Potassium and Sulphur Affect Plant growth and Biological Nitrogen Fixation in Crop and Pasture Legumes? A Meta-analysis[J]. Field Crops Research, 2014, 156(1):161-171 [6] 胡倡, 李慧明, 伍惠, 等. 解磷菌和根瘤菌复合接种对大豆和紫云英共生固氮的影响[J]. 华中农业大学学报, 2020, 39(4):38-45 [7] 毕银丽, 陈书琳, 孔维平, 等. 接种微生物对大豆生长及其根际土壤的影响[J]. 生态科学, 2014, 33(1):121-126 [8] 刘志鹏. 黄土高原地区土壤养分的空间分布及其影响因素[D]. 西安:中国科学院研究生院(教育部水土保持与生态环境研究中心), 2013:80 [9] 靳淑静, 韩蕊莲, 梁宗锁. 黄土丘陵区不同立地达乌里胡枝子群落水分特征及生物量研究[J]. 西北植物学报, 2009, 29(3):542-547 [10] BALEMI T, NEGISHO K. Management of Soil Phosphorus and Plant Adaptation Mechanisms to Phosphorus Stress for Sustainable Crop Production:A Review[J]. Journal of Soil Science and Plant Nutrition, 2012, 12(3):547-562 [11] WITHERS P J A, DIJK K C V, NESET T S S, et al. Stewardship to Tackle Global Phosphorus in Efficiency:The case of Europe[J]. Ambio, 2015, 44(2):193-206 [12] WAHID F, SHARIF M, SHAH F, et al. Mycorrhiza and Phosphate Solubilizing Bacteria:Potential Bioagents for Sustainable Phosphorus Management in Agriculture[J]. Phyton, 2022, 91(2):257-278 [13] 李俊, 姜昕, 马鸣超. 新形势下微生物肥料产业运行状况及发展方向[J]. 植物营养与肥料学报, 2020, 26(12):2108-2114 [14] 陈倩, 刘善江, 白杨, 等. 山西矿区复垦土壤中解磷细菌的筛选及鉴定[J]. 植物营养与肥料学报, 2014, 20(6):1505-1516 [15] ZAIDI A, KHAN M S, RIZVI A, et al. Microbes for Legume Improvement[M]. Cham:Springer, 2017:175-197 [16] SUBRAMANIAN P, KIM K, KRISHNAMOORTHY R, et al. Endophytic Bacteria Improve Nodule Function and Plant Nitrogen in Soybean on Co-inoculation with Bradyrhizobium japonicum MN110[J]. Plant Growth Regulation, 2015, 76(3):327-332 [17] WEI G, FAN L, ZHU W, et al. Isolation and Characterization of The Heavy Metal Resistant Bacteria CCNWRS33-2 Isolated from Root Nodule of Lespedeza cuneata in Gold Mine Tailings in China[J]. Journal of Hazardous Materials, 2009, 162(1):50-56 [18] LI X L, ZHAO X Q, DONG X Y, et al. Secretion of Gluconic Acid from Nguyenibacter sp. L1 is Responsible for Solubilization of Aluminum Phosphate[J]. Frontiers in Microbiology, 2021(12):784025 [19] 胡志伟. 植物促生细菌强化能源植物修复铜污染土壤效应及其机制研究[D]. 南京:南京农业大学, 2013:24 [20] 漫静, 唐波, 邓波, 等. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1):59-71 [21] 张晓波. 草地早熟禾根际促生菌(PGPR)特性及根际微生物区系研究[D]. 北京:北京林业大学, 2008:48-52 [22] SCHWYN B, NEILANDS J B. Universal Chemical Assay for The Detection and Determination of Siderophores[J]. Analytical Biochemistry, 1987, 160(1):47-56 [23] 康宏, 郭艾琳, 马梦彪, 等. 产有机酸采油菌的筛选及产酸情况的分析[J]. 生物技术, 2011, 21(4):89-93 [24] 沈萍, 陈向东. 微生物学[M]. 第二版.北京:高等教育出版社, 2006:85-92 [25] PALANIAPPAN P, CHAUHAN P S, SARAWANAN V S, et al. Isolation and Characterization of Plant Growth Promoting Endophytic Bacterial Isolates from Root Nodule of Lespedeza sp[J]. Biology and Fertility of Soils, 2010, 46(8):807-816 [26] HERNÁNDEZ-HERNÁNDEZ L, COUTINO-MEGCHUN J T, RINCON-MOLINA C I, et al. Endophytic Bacteria from Root Nodules of Ormosia macrocalyx with Potential as Plant Growth Promoters and Antifungal Activity[J]. Journal of Environmental Biology, 2018, 39(6):997-1005 [27] 郝莎莎, 卫旭芳, 侯智霞, 等. 文冠果根系瘤状物可培养内生细菌的特性[J]. 应用与环境生物学报, 2018, 24(4):766-774 [28] CHENG Y, LUO J, WANG Y, et al. Staphylococcus hominis YJILJH and Staphylococcus epidermidis YJ101 Promote the Growth of White Clover (Trifolium repens L.) by Increasing Available Phosphorus[J]. Symbiosis, 2021, 83(1):103-114 [29] 撖冬荣, 姚拓, 李海云, 等. 化肥减量配施微生物肥料对垂穗披碱草生长的影响[J]. 草业学报, 2022, 31(4):53-61 [30] ZHANG T, HU F, MA L. Phosphate-solubilizing Bacteria from Safflower Rhizosphere and Their Effect on Seedling Growth[J]. Open Life Sciences, 2018, 14(1):246-254 [31] 朱颖, 库永丽, 刘金良, 等. 黄土高原天然和人工油松林根际土壤解磷细菌群落特征及其功能[J]. 应用生态学报, 2021, 32(9):3097-3106 [32] YAGHOUBI K M, STRAFELLA S, ALLEGRETTA I, et al. Isolation of Bacteria with Potential Plant-Promoting Traits and Optimization of Their Growth Conditions[J]. Current Microbiology, 2021, 78(2):464-478 [33] PRZEMIENIECKI S W, KUROWSKI T P, KOTLARZ K, et al. Bacteria Isolated from Treated Wastewater for Biofertilization and Crop Protection Against Fusarium spp. Pathogens[J]. Journal of Soil Science and Plant Nutrition, 2019, 19(1):1-11 [34] 贺梦醒, 高毅, 胡正雪, 等. 解磷菌株B25的筛选、鉴定及其解磷能力[J]. 应用生态学报, 2012, 23(1):235-239 [35] WALPOLA B C, YOON M H. Prospectus of Phosphate Solubilizing Microorganisms and Phosphorus Availability in Agricultural Soils:A Review[J]. African Journal of Microbiology Research, 2012, 6(37):6600-6605 [36] 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1):1-7 [37] MARRA L M, OLIVEIRA-LONGATTI S M D, SOARES C R F S, et al. The Amount of Phosphate Solubilization Depends on The Strain, C-source, Organic Acids and Type of Phosphate[J]. Geomicrobiology Journal, 2019, 36(3):232-242 [38] 何凌仙子, 贾志清, 等. 植物适应逆境胁迫研究进展[J]. 世界林业研究, 2018, 31(2):13-18 [39] 撖冬荣, 侯栋, 姚拓, 等. 莴笋根部促生菌筛选与促生特性测定[J]. 干旱地区农业研究, 2020, 38(3):127-133 [40] 刘晓婷, 姚拓.高寒草地耐低温植物根际促生菌的筛选鉴定及特性研究[J]. 草业学报, 2022, 31(8):178-187 [41] 张巍, 冯玉杰, 胡纯国, 等. 耐盐碱解磷菌的分离鉴定及解磷能力研究[J]. 土壤通报, 2009, 40(3):572-575 [42] 孙雪, 董永华, 王娜, 等. 耐盐碱促生菌的筛选及性能[J]. 生物工程学报, 2020, 36(7):1356-1364 [43] 姚蒙蒙, 郭琛文, 赫凤彩, 等. 晋北盐碱草地土壤化学计量特征及其与植物多样性的关系[J]. 草地学报, 2021, 29(12):2800-2807 [44] 李章雷, 刘爽, 王艳宇, 等. 5株耐盐碱促生细菌的筛选鉴定及其对红小豆的促生作用[J]. 微生物学通报, 2021, 48(5):1580-1592 [45] 勾宇春, 王宗抗, 张志鹏, 等. 植物根际促生菌作用机制研究进展[J/OL]. 应用与环境生物学报, 2022-03-20/2022-06-27 [46] SAHA M, SARKAR S, SARKAR B, et al. Microbial Siderophores and Their Potential Applications:A Review[J]. Environmental Science Pollution Research, 2016, 23(5):3984-3999 [47] 周波, 代金霞. 柠条根际产铁载体促生菌的分离鉴定及其促生特性[J]. 北方园艺, 2017(21):122-129 [48] CUI K P, XU T, CHEN J W, et al. Siderophores, A Potential Phosphate Solubilizer from The Endophyte Streptomyces sp. CoT10, Improved Phosphorus Mobilization for Host Plant Growth and Rhizosphere Modulation[J]. Journal of Cleaner Production, 2022, 367:133110 |