[1] LEMETRE C,MAMIKO J,CHARLOP P,et al. Bacterial natural product biosynthetic domain composition in soil correlates with changes in latitude on a continent-wide scale[J]. Proceedings of the National Academy of Sciences,2017,114(44):11615-11620 [2] MORRISSEY E M,MAU R L,SCHWARTXE,et al. Bacterial carbon use plasticity,phylogenetic diversity and the priming of soil organic matter[J]. The ISME journal,2017,11(8):1890-1899 [3] 郭二辉,云菲,冯志培,等. 河岸带不同植被格局对表层土壤养分分布和迁移特征的影响[J]. 自然资源学报,2016,31(7):1164-1172 [4] 佟斌,曾昭文,焉志远. 蚂蚁河河岸缓冲带湿地优势种植物群落构建技术研究[J]. 国土与自然资源研究,2018(3):93-96 [5] BING H J,WU Y H,ZHOU J,et al. Spatial variation of heavy metal contamination in the riparian sediments after two-year flow regulation in the Three Gorges Reservoir,China[J]. Science of the Total Environment,2019(649):1004-1016 [6] SCHILING K E,JACOBSON P J,WOLTER C F. Using riparian zone scaling to optimize buffer placement and effectiveness[J]. Landscape Ecology,2018(33):147-156 [7] 郭二辉,樊子豪,张瑞香,等. 河岸带生态系统植被与土壤对水文变化的响应研究进展[J]. 生态学报,2021,41(23):1-10 [8] GREENWAY. Macrophyte zonation in stormwater wetlands:getting it right! A case study from subtropical Australia[J]. Water Science and Technology,2007,56(3):223-231 [9] 杨宁,邹冬生,杨满元,等. 衡阳紫色土丘陵坡地恢复过程中土壤微生物生物量与土壤养分演变[J]. 林业科学,2014,50(12):144-150 [10] 杨宁,杨满元,雷玉兰,等. 紫色土丘陵坡地土壤微生物群落的季节变化[J]. 生态环境学报,2015,24(1):34-40 [11] 钱进,郑浩,朱月明,等. 干湿交替对河岸带环境效应的影响机制研究进展[J]. 水利水电科技进展,2016,36(1):11-22 [12] 雷宏霖,王生荣,韩士杰,等. 土壤干湿交替对长白山阔叶红松林土壤微生物活性与区系的影响[J]. 东北林业大学学报,2009,37(7):80-86 [13] 靳永超,罗建武,朱彦鹏,等. 内蒙古辉河国家级自然保护区湿地保护成效[J]. 环境科学研究,2015,28(9):1424-1429 [14] 罗琰,苏德荣,吕世海,等. 辉河湿地河岸带植物物种多样性与土壤因子的关系[J]. 湿地科学,2016,14(3):396-402 [15] 靳勇超,王伟,辛利娟,等. 辉河国家级自然保护区土地覆盖与景观格局变化分析[J]. 草业科学,2014,31(10):1859-1866 [16] 靳三玲,郑志荣,刁兆岩,等. 呼伦贝尔草原辉河湿地表层土壤盐分分布特征[J]. 草地学报,2021,29(4):749-756 [17] 鲍士旦. 土壤农化分析[M].第三版.北京:中国农业出版社,2000:178-196 [18] CAPORASO G J,CHRISTIAN L L,WILLIAM A W,et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences,2011,108(Supplement 1):4516-4522 [19] 季淮,韩建刚,李萍萍,等. 洪泽湖湿地植被类型对土壤有机碳粒径及微生物群落结构特征的影响[J]. 南京林业大学学报(自然科学版),2021,45(1):141-150 [20] 韩晓丽,黄春国,张芸香,等. 文峪河上游河岸带不同植被类型土壤nirS反硝化菌群结构及功能[J]. 生态学报,2020,40(6):1977-1989 [21] 陈影,陈苏,马鸿岳,等.辽河干流河岸带植物及微生物多样性研究[J].农业环境科学学报,2020,39(9):2048-2057 [22] YU X,HE X W,FENG Z S,et al. A comprehensive analysis of the microbial diversity in natural and engineered ecosystems based on high-throughput sequencing of 16S rRNA gene[J]. International Biodeterioration and Biodegradation,2019,140:160-168 [23] YANG Z Y,HOLLEBONE B P,SHAHK,et al. Biodegradation potential assessment by using autochthonous microorganisms from the sediments from Lac Mégantic (Quebec,Canada) contaminated with light residual oil[J]. Chemosphere,2020,239:124796 [24] 沈聪,刘爽,苏建宇,等. 半干旱荒漠区柠条根际细菌群落结构与功能[J]. 基因组学与应用生物学,2020,40(11-12):3508-3517 [25] WANG X J,ZHANG Z C,YU Z Q,et al. Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau[J]. Science of the Total Environment,2020(747):141358 [26] HAN W J,ZHAO S,LIU H H,et al. Isolation identification and agarose degradation of a polysaccharide-degrading marine bacterium Persicobacter sp.JZB09[J]. Acta Microbiological Sinica,2012,52(6):776 [27] 章妮,陈克龙,祁闻,等. 模拟增温对青海湖鸟岛土壤产甲烷菌群落特征的影响[J]. 微生物学杂志,2022,42(1):17-25 [28] 台喜生,冯佳丽,李梅,等. 鞘氨醇单胞菌在生物降解方面的研究进展[J]. 湖南农业科学,2011(7):21-25 [29] 余锦涛,刘慧,李翠,等. 氯代脂肪烃污染土壤微生物群落结构的主控因子[J]. 环境科学与技术,2022,45(6):29-36 [30] MASZENANA M,BESSARAB I B,WILLIAM R B H,et al. The phylogeny,ecology and ecophysiology of the glycogen accumulating organism (GAO) Defluviicoccus in wastewater treatment plants[J]. Water Research,2022(221):118729 [31] ZHANG M Y,PATRICK J O,ZHANG J Y,et al. Linking soil nutrient cycling and microbial community with vegetation cover in riparian zone[J]. Geoderma,2021(384):114801 [32] 程萌,马俊杰,刘丹,等. CO2封存泄漏的稻田土壤细菌监测指标筛选研究[J]. 环境科学学报,2021,41(6):2390-2401 [33] ZHENG Q,HU Y T,ZHANG S S,et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity[J]. Soil Biology and Biochemistry,2019(136):107521 [34] 潘福霞,来晓双,李欣,等. 不同湿地植物脱氮效果与根际土壤微生物群落功能多样性特征分析[J]. 环境科学研究,2020,33(6):1497-1503 [35] 丁成翔,杨晓霞,董全民. 青藏高原高寒草原放牧方式对植被、土壤及微生物群落的影响[J]. 草地学报,2020,28(1):159-169 [36] 李秀清,李晓红. 鄱阳湖湿地不同植物群落土壤养分及微生物多样性研究[J]. 生态环境学报,2019,28(2):385-394 [37] 李兴福,苏德荣,吕世海,等. 呼伦贝尔草原辉河湿地不同淹水状态的土壤碳氮磷特征比较[J]. 生态学报,2018,38(6):2204-2212 [38] 郭娜,孙丽娜,孟越,等. 辽河保护区河岸带土壤微生物群落结构特征[J]. 沈阳大学学报(自然科学版),2016,28(6):457-463 [39] 付莉娇,李雪琴,范继辉,等. 藏北高寒草原典型植物根际土壤细菌群落结构多样性及根系特征分析[J]. 草地学报,2022,30(5):1130-1140 [40] 姚世庭,芦光新,邓晔,等. 模拟增温对高寒草地土壤原核生物群落组成及多样性影响[J]. 草地学报,2021,29:27-34 [41] 汪焱,张英,苏贝贝,等. 高寒区不同地域燕麦根际土壤微生物多样性研究[J]. 草地学报,2020,28(2):358-366 [42] 张杰雪,王占青,全小龙,等. 高寒地区人工草地土壤微生物群落对不同种植方式和年限的响应[J]. 草地学报,2021,29(2):270-280 [43] SCHIMEL J P,GULLEDGE J M,CLEIN-CURLEY J S,et al. Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga[J]. Soil Biology and Biochemistry,1999,31(6):831-838 [44] 蔡晓布,张永青,邵伟. 不同退化程度高寒草原土壤肥力变化特征[J]. 生态学报,2008,28(3):1034-1044 [45] 孔涛,吴祥云,赵雪淞,等. 浑河上游河岸带土壤微生物数量及酶活性特征[J]. 水土保持通报,2014,34(1):123-128 |