[1] 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8):2741-2746 [2] 刘隆阳. 紫花苜蓿响应盐胁迫的生理特性及根代谢产物分析[D]. 扬州:扬州大学, 2020:3-4 [3] 李格, 孟小庆, 蔡敬, 等. 活性氧在植物非生物胁迫响应中功能的研究进展[J]. 植物生理学报, 2018, 54(6):951-959 [4] CEN H F, WANG T T, LIU H Y, et al. Melatonin application improves salt tolerance of alfalfa (Medicago sativa L.) by enhancing antioxidant capacity[J]. Plants, 2020, 9(2):220 [5] 胡卉芳, 崔乐乐, 王娟, 等. 老芒麦不同品系种子萌发期耐盐性[J]. 干旱区资源与环境, 2022, 36(11):119-126 [6] 程贝, 樊文娜, 刘家齐, 等. 盐分胁迫对紫花苜蓿发芽特性的影响[J]. 江西农业学报, 2019, 31(9):61-67 [7] 黄婷. 紫花苜蓿响应盐胁迫的比较转录组学分析和植物耐盐机制研究[D]. 银川:宁夏大学, 2020:1-7 [8] 赵力兴, 王琳, 温丽, 等. 盐碱地紫花苜蓿的适应机制与栽培策略[J]. 草原与草坪, 2022, 42(1):142-149 [9] 王芳, 刘燕, 王铁兵, 等. 外源褪黑素对玉米幼苗盐胁迫的缓解效应研究[J]. 中国草地学报, 2020, 42(5):14-21 [10] HUANG B, CHEN Y E, ZHAO Y Q,et al. Exogenous melatonin alleviates oxidative damages and protects photosystem Ⅱ in maize seedlings under drought stress[J]. Frontiers in Plant Science, 2019, 10:677 [11] SHARMA A, ZHENG B. Melatonin mediated regulation of drought stress:physiological and molecular aspects[J]. Plants, 2019,8(7):190 [12] 崔庆利. 水分胁迫对沙棘细胞膜透性及丙二醛含量的影响[J]. 现代农业科技, 2017(11):139, 145 [13] 王明春. 豌豆蚜危害对四种苜蓿品种(系)可溶性蛋白和单宁含量变化的影响[J]. 现代农业, 2020(8):24-25 [14] THOMPSON. A novel dual-phase culture medium promotes germination and seedling establishment from immature embryos in South African Disa(Orchidaceae) species[J]. Plant Growth Regulation, 2007, 53(3):163-171 [15] 胡小荣, 陶梅, 卢新雄, 等. α-淀粉酶和超氧化物歧化酶等位酶与水稻种子超干燥保存遗传完整性的研究[J]. 植物遗传资源学报, 2007,8(2):228-230 [16] MUNNS R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2):239-250 [17] 朱月, 钟尉, 赵雪梅, 等. 紫斑牡丹叶片多糖对羟自由基清除能力的比较[J]. 江苏农业科学, 2016, 44(11):341-342 [18] 李德燕,周运超. 钙对马尾松针叶生理生化特性及细胞超微结构的影响[J]. 西北林学院学报, 2018, 33(2):20-27 [19] 戴翠荣,赵晓雁,余力,等. 氟节胺化学打顶对南疆棉花农艺性状及产量的影响[J]. 新疆农业科学, 2015, 52(8):1394-1398 [20] ZHAN H, NIE X, ZHANG T, et al. Melatonin:a small molecule but important for salt stress tolerance in plants[J]. International Journal of Molecular Sciences, 2019, 20(3):709 [21] KHAN MN, ZHANG J, LUO T, et al. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification:antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration[J]. Industrial Crops and Products,2019,140:111597 [22] AFREEN F, ZOBAYED S M, KOZAI T. Melatonin in Glycyrrhiza uralensis:response of plant roots to spectral quality of light and UV-B radiation[J]. Journal of Pineal Research, 2006;41(2):108-15 [23] LI J, LIU J, ZHU T, et al. The role of melatonin in salt stress responses[J]. International Journal of Molecular Sciences, 2019, 20(7):1735 [24] 张昭, 聂宇婷, 崔凯伦, 等. 褪黑素调控草类植物生长发育及抗逆性功能研究进展[J]. 草地学报, 2023, 31(9):2571-2581 [25] 崔雪雯. 紫花苜蓿的耐盐性鉴定及褪黑素对盐胁迫的缓解效应[D]. 杨凌:西北农林科技大学, 2021:14-61 [26] JIANG D, LU B, LIU L, et al. Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs[J]. BMC Plant Biology, 2021, 21(1):331 [27] 赵丽娟, 麻冬梅, 王文静, 等. 外源褪黑素对盐胁迫下紫花苜蓿幼苗抗氧化能力以及光合作用效率的影响[J]. 西北植物学报, 2021, 41(8):1355-1363 [28] 苏立娜, 麻冬梅, 李嘉文, 等. 外源褪黑素对盐胁迫下两种紫花苜蓿生理及光合特性的影响[J]. 草地学报, 2023, 31(3):726-732 [29] 赵东豪. 外源脱落酸和褪黑素对盐胁迫下紫花苜蓿生理特性的影响[D]. 杨凌:西北农林科技大学, 2023:3-16 [30] 吴华鑫. 外源褪黑素对盐胁迫下'金娃娃’萱草的缓解效应[D]. 哈尔滨:东北农业大学, 2022:5-28 [31] 张婷. 盐碱胁迫下7种百合的生理响应及外源褪黑素对百合耐盐碱性的影响[D]. 重庆:西南大学, 2021:4-15 [32] 陈海雁, 黄荣, 赵亮, 等. Cp2-EPS对盐胁迫下紫花苜蓿苗期形态及光合特性的影响[J]. 草地学报, 2024, 32(1):229-238 [33] 王文静, 麻冬梅, 赵丽娟, 等. 2, 4-表油菜素内酯对盐胁迫下紫花苜蓿生理指标及根系离子积累的影响[J]. 草地学报, 2021, 29(6):1363-1368 [34] 王小山, 季晓敏, 刘隆阳, 等. EBR对NaCl胁迫下苜蓿属植物离子吸收和分配的影响[J]. 草业学报, 2018, 27(9):110-119 [35] 曹佳诺, 王佳佳, 项竞仪, 等. 盐胁迫对苍术幼苗生理指标的影响[J]. 唐山师范学院学报, 2023, 45(6):49-53 [36] 田卜伊. 4种紫花苜蓿逆境胁迫下生长及生理特征研究[D]. 杨凌:西北农林科技大学, 2023:6-20 [37] 寇江涛. 盐胁迫下紫花苜蓿种子萌发对外源2, 4-表油菜素内酯诱导的生理响应[J]. 草原与草坪, 2020, 40(5):8-14 [38] SUN W N, VAN M M, VERBRUGGEN N. Small heat shock proteins and stress tolerance in plants[J]. Biochimica et Biophysica Acta, 2002, 1577(1):1-9 [39] KRAUSE G H, SANTARIUS K A. Relative thermostability of the chloroplast envelope[J]. Planta, 1975, 127(3):285-99 [40] DOUGLAS J M, ANDREIA C, RAFAEL R, et al. Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses[J]. New Phytologist, 2015, 208(3):776-89 [41] DEBNATH B, HUSSAIN M, IRSHAD M, et al. Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential[J]. Molecules, 2018, 23(2):388 [42] SUN L Y, SONG F B, GUO J H, et al. Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize[J]. International Journal of Molecular Sciences, 2020, 21(3):782 [43] SHARIF R, XIE C, ZHANG H Q, et al. Melatonin and its effects on plant systems[J]. Molecules, 2018, 23(9):2352 [44] CUI G B, ZHAO X X, LIU S D, et al. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings[J]. Plant Physiology and Biochemistry. 2017;118:138-49 [45] MENG J F, XU T F, WANG Z Z, et al. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress:antioxidant metabolites, leaf anatomy, and chloroplast morphology[J]. Journal of Pineal Research, 2014, 57(2):200-12 |