[1] KAZAN K,LYONS R. The link between flowering time and stress tolerance[J]. Journal of Experimental Botany,2016,67(1):47-60 [2] ZOU L,PAN C,WANG M X,et al. Progress on the mechanism of hormones regulating plant flower formation[J]. Hereditas (Beijing),2020,42(8):739-751 [3] LIN X Y,LIU B H,WELLER J L,et al. Molecular mechanisms for the photoperiodic regulation of flowering in soybean[J]. Journal of Integrative Plant Biology,2021,63(6):981-994 [4] LUO Y,LIU M-L,CAO J,et al. The role of salicylic acid in plant flower development[J]. Forestry Research,2022,2(14):2-6 [5] 张云秀,蒋旭,尉春雪,等.紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J].中国农业科学,2022,55(16):3082-3092 [6] 卢栋宇,王雪,蒋旭,等.紫花苜蓿花期调控基因MsCOL2的克隆及功能研究[J].草地学报,2023,31(10):2905-2915 [7] SHU K,CHEN Q,WU Y R,et al. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription[J]. Journal of Experimental Botany,2016,67(1):195-205 [8] LI Z C,OU Y,ZHANG Z C,et al. Brassinosteroid signaling recruits histone 3 lysine-27 demethylation activity to FLOWERING LOCUS C chromatin to inhibit the floral transition in Arabidopsis[J]. Molecular Plant,2018,11(9):1135-1146 [9] BULGAKOV V P,AVRAMENKO T V. Linking brassinosteroid and ABA signaling in the context of stress acclimation[J]. International Journal of Molecular Sciences,2020,21(14):5108 [10] TANG L,LI G,WANG H,et al. Exogenous abscisic acid represses rice flowering via SAPK8-ABF1-Ehd1/Ehd2 pathway[J]. Journal of Advanced Research,2024,59:35-47 [11] KOBAYASHI Y,WEIGEL D. Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering[J]. Genes& Development,2007,21(19):2371-2384 [12] LEDENT V,VERVOORT M. The basic helix-loop-helix protein family:comparative genomics and phylogenetic analysis[J]. Genome Research,2001,11(5):754-770 [13] 朱璐璐,周波. bHLH蛋白在植物发育及非生物胁迫中的调控[J].分子植物育种,2022,20(20):6750-6760 [14] CARRETERO-PAULET L,GALSTYAN A,ROIG-VILLANOVA I,et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiology,2010,153(3):1398-1412 [15] ZUO Z F,LEE H Y,KANG H G. Basic Helix-Loop-Helix transcription factors:regulators for plant growth development and abiotic stress responses[J]. International Journal of Molecular Sciences,2023,24(2):1419 [16] LIU H,YU X,LI K,et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis[J]. Science,2008,322(5907):1535-1539 [17] ZHOU L,LU Y,HUANG J,et al. Arabidopsis CIB3 regulates photoperiodic flowering in an FKF1-dependent way[J]. Bioscience Biotechnology Biochemistry,2021,85(4):765-774 [18] YANG D,ZHAO W,MENG Y,et al. A CIB1-LIKE transcription factor GmCIL10 from soybean positively regulates plant flowering[J]. Science China-Life Sciences,2015,58(3):261-269 [19] ASLAM M,JAKADA B H,FAKHER B,et al. Genome-wide study of pineapple (Ananas comosus L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2(AcCIB2)participates in flowering time regulation and abiotic stress response[J]. BMC Genomics,2020,21(1):735 [20] ZHAI Q Z,ZHANG X,WU F M,et al. Transcriptional mechanism of jasmonate receptor COI1-Mediated delay of flowering time in Arabidopsis[J]. The Plant Cell,2015,27(10)2814-2828 [21] 蒋旭,崔会婷,王珍,等.紫花苜蓿MsNST的克隆及对木质素与纤维素合成的功能分析[J].中国农业科学,2020,53(18):3818-3832 [22] 唐芳,梅亭,高佳荷,等.紫花苜蓿GPAT基因家族鉴定及在盐碱胁迫下的表达模式分析[J].草地学报,2023,31(9):2608-2620 [23] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT Method[J]. Nature Methods,2001,25(4):402-408 [24] ANDREW B. Arabidopsis thaliana floral dip transformation method[J]. Methods in Molecular Biology,2006,34(3):87-103 [25] DEHESH K,BRUCE W B. QUAIL P H. A trans-acting factor that binds to a GT-motif in a phytochrome gene promoter[J]. Science,1990,250(4986):1397-1399 [26] DONALD R G,CASHMORE A R. Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter[J]. EMBO Journal,1990,9(6):1717-1726 [27] LIU Y,LI X,LI K,et al. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis[J]. Plos Genetics,2013,9(10):e1003861 [28] LIU Y,LI X,MA D,et al. CIB1 and CO interact to mediate CRY2-dependent regulation of flowering[J]. EMBO Reports,2018,19(10):e45762 [29] LIU L J,ZHANG Y C,LI Q H,et al. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis[J]. Plant Cell,2008,20(2):292-306 [30] MENG Y,LI H,WANG Q,et al. Blue light-dependent interaction between cryptochrome2 and CIB1 regulates transcription and leaf senescence in soybean[J]. Plant Cell,2013,25(11):4405-4420 [31] DONG X,LI Y,GUAN Y,et al. Auxin-induced AUXIN RESPONSE FACTOR 4 activates APETALA1 and FRUITFULL to promote flowering in woodland strawberry[J]. Horticulture Research,2021,8(1):115 [32] WANG H,LI Y,PAN J,et al. The bHLH transcription factors MYC2, MYC3, and MYC4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis[J]. Molecular Plant,2017,10(11):1461-1464 [33] AKHTAR A,SHAH Z,JUNGHOON P,et al. ABA INSENSITIVE 2 promotes flowering by inhibiting OST1/ABI5-dependent FLOWERING LOCUS C transcription in Arabidopsis[J]. Journal of Experimental Botany,2024,75(8):2481-2493 [34] HACKENBERG D,KEETMAN U,GRIMM B. Homologous NF-YC2 subunit from Arabidopsis and tobacco is activated by photooxidative stress and induces flowering[J]. International Journal of Molecular Sciences,2012,13(3):3458-3477 [35] LI K,WANG Y,HAN C,et al. GA signaling and CO/FT regulatory module mediate salt-induced late flowering in Arabidopsis thaliana[J]. Plant Grouth Regulation,2007,53(3):195-206 [36] HARIG L,BEINECKE F A,QLTMANNS J,et al. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco[J]. The Plant Journal,2012,72(6):908-921 [37] WINTERHAGEN P,TIYAYON P,SAMACH A,et al. Isolation and characterization of FLOWERING LOCUS T subforms and APETALA1 of the subtropical fruit tree Dimocarpus longan[J]. Plant Physiology and Biochemistry,2013,71:184-190 [38] COELHO C P,MINOW M A,CHALFUN-JÚNIOR A,et al. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis[J]. Frontiers in Plant Science,2014,5:221 |