[1] Michaels A F. The Ratios of Life[J]. Science,2003,300(5621):906-907
[2] Schlesinger W H. Biogeochemistry:an analysis of global change[M]. NewYork:Academic Press,1997:173-231
[3] Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature,1982(298):156-159
[4] ZHAO F, DI K, HAN X, et al. Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity[J]. Ecological Engineering,2015,74:415-422
[5] XU X, Thornton P E, Post W M. A Global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeography,2013,22(6):737-749
[6] 张海东,汝海丽,焦峰,等. 黄土丘陵区退耕时间序列梯度上草本植被群落与土壤C、N、P、K化学计量学特征[J]. 环境科学,2016,37(3):20-31
[7] 贺金生,韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报,2010,34(1):2-6
[8] 曾冬萍,蒋利玲,曾从盛,等. 生态化学计量学特征及其应用研究进展[J]. 生态学报,2013,33(18):5484-5492
[9] 刘文亭,卫智军,吕世杰,等. 中国草原生态化学计量学研究进展[J]. 草地学报,2015,23(5):914-926
[10] 王家妍,蓝嘉川,龙涛,等. 常绿阔叶林藤本植物叶片N、P、K生态化学计量学特征[J]. 南方农业学报,2013,44(5):815-818
[11] 张向茹,马露莎,陈亚南,等. 黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究[J]. 土壤学报,2013,50(4):818-825
[12] 王晶苑,王绍强,李纫兰,等. 中国四种森林类型主要优势植物的C:N:P化学计量学特征[J]. 植物生态学报,2011,35(6):587-595
[13] 陈亚南,马露莎,张向茹,等. 陕西黄土高原刺槐枯落叶生态化学计量学特征[J]. 生态学报,2014,34(15):4412-4422
[14] 杨佳佳,张向茹,马露莎,等. 黄土高原刺槐林不同组分生态化学计量关系研究[J]. 土壤学报,2014,51(1):133-142
[15] 赵彤,闫浩,蒋跃利,等. 黄土丘陵区植被类型对土壤微生物量碳氮磷的影响[J]. 生态学报,2013,33(18):5615-5622
[16] 张向茹,马露莎,陈亚南,等. 黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究[J]. 土壤学报,2013,50(4):818-825
[17] 艾泽民,陈云明,曹扬. 黄土丘陵区不同林龄刺槐人工林碳, 氮储量及分配格局[J]. 应用生态学报,2014,25(2):333
[18] Walker T W, Adams A F R. Studies on soil organic matter:I. Influence of phosphorus content of parent materials on accumulation of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils[J]. Soil Science,1958,85(6):307-318
[19] Melillo J M, Field C B, Moldan B. Interactions of the major biogeochemical cycles:Global change and human impacts (Scientific Committee on Problems of the Environment (SCOPE) Series)[M]. Washington:Island Press,2003:45-53
[20] ZHANG Z, SONG X, LU X, et al. Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils:influences of vegetation coverage, plant communities, geomorphology, and seawalls[J]. Journal of Soils and Sediments,2013,13(6):1043-1051
[21] Cleveland C C, Liptzin D. C:N:P stoichiometry in soil:is there a "Redfield ratio" for the microbial biomass[J]. Biogeochemistry,2007,85(3):235-252
[22] XUE S, LIU G B, PAN Y P, et al. Evolution of soil labile organic matter and carbon management index in the artificial Robinia of Loess Hilly Area[J]. Scientia Agricultura Sinica,2009,42(4):1458-1464
[23] Anderson J P E, Domsch K H. A physiological method for the quantitative measurement of microbial biomass in soils[J]. Soil Biology and Biochemistry,1978,10(3):215-221
[24] Brookes P C, Powlscin D S, Jenkinson D S. Phosphorus in the soil microbial biomass[J]. Soil Biology and Biochemistry,1984,2(16):169-175
[25] 鲍士旦. 土壤农化分析[M]. 第3版,北京:中国农业出版社,2000:25-76
[26] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry,1987,19(6):703-707
[27] Vitousek P M, Naylor R, Crews T, et al. Nutrient imbalances in agricultural development[J]. Science,2009,324(5934):1519-1520
[28] 薛萐,刘国彬,戴全厚,等. 不同植被恢复模式对黄土丘陵区侵蚀土壤微生物量的影响[J]. 自然资源学报,2007,22(1):20-27
[29] XUE S, LIU G, DAI Q, et al. Effects of different vegetation restoration models on soil microbial biomass in eroded hilly Loess Plateau, China[J]. Frontiers of Forestry in China,2007,2(4):376-381
[30] Vance E D, Chapin F S. Substrate limitations to microbial activity in taiga forest floors[J]. Soil Biology and Biochemistry,2001,33(2):173-188
[31] Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Soil Research,1992,30(2):195-207
[32] Joergensen R G, Anderson T H, Wolters V. Carbon and nitrogen relationships in the microbial biomass of soils in beech (Fagus sylvatica L.) forests[J]. Biology and Fertility of Soils,1995,19(2-3):141-147
[33] Devi N B, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India[J]. Applied Soil Ecology,2006,31(3):220-227
[34] Anderson T, Domsch K H. Ratios of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology and Biochemistry,1989,21(4):471-479
[35] Martikainen P J, Palojärvi A. Evaluation of the fumigation-extraction method for the determination of microbial C and N in a range of forest soils[J]. Soil Biology and Biochemistry,1990,22(6):797-802
[36] Brookes P C, Powlson D S, Jenkinson D S. Phosphorus in the soil microbial biomass[J]. Soil Biology and Biochemistry,1984,16(2):169-175
[37] 张海燕,肖延华,张旭东,等. 土壤微生物量作为土壤肥力指标的探讨[J]. 土壤通报,2006,37(3):422-425
[38] 薛菁芳,高艳梅,汪景宽,等. 土壤微生物量碳氮作为土壤肥力指标的探讨[J]. 土壤通报,2007,38(2):247-250
[39] Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C:N:P ratios in China's soils:a synthesis of observational data[J]. Biogeochemistry,2010,98(1-3):139-151
[40] 朱秋莲,邢肖毅,张宏,等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报,2013,33(15):4674-4682
[41] Hartman W H, Richardson C J. Differential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (q CO 2):Is There a Biological Stoichiometry of Soil Microbes[J]. Plos one,2013,8(3):e57127
[42] 王维奇,仝川,贾瑞霞,等. 不同淹水频率下湿地土壤碳氮磷生态化学计量学特征[J]. 水土保持学报,2010,24(3):238-242
[43] 贾宇,徐炳成,李凤民,等. 半干旱黄土丘陵区苜蓿人工草地土壤磷素有效性及对生产力的响应[J]. 生态学报,2007,27(1):42-47
[44] Griffiths B S, Spilles A, Bonkowski M. C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess[J]. Ecological Processes,2012,1(1):1-11
[45] Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology,2003,40(3):523-534
[46] Walker T W, Syers J K. The fate of phosphorus during pedogenesis[J]. Geoderma,1976,15(1):1-19 |