[1] Délye C. Unravelling the genetic bases of non-target-site-based resistance (ntsr) to herbicides:A major challenge for weed science in the forthcoming decade[J]. Pest Management Science, 2013, 69(2):176-187 [2] Gaines T A, Lorentz L, Figge A, et al. Rna-seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in lolium rigidum[J].The Plant Journal, 2014, 78(5):865-876 [3] Duhoux A, Carrère S, Gouzy J, et al. Rna-seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolACTate-synthase identifies transcripts linked to non-target-site-based resistance[J]. Plant Molecular Biology, 2015, 87(4):473-487 [4] Gachon C, Mingam A, Charrier B. Real-time pcr:What relevance to plant studies[J]. Journal of Experimental Botany, 2004, 55(402):1445-1454 [5] Kozera B, Rapacz M. Reference genes in real-time pcr[J]. Journal of Applied Genetics, 2013, 54(4):391-406 [6] Udvardi M K, Czechowski T, Scheible W R. Eleven golden rules of quantitative rt-pcr[J]. The Plant Cell, 2008, 20(7):1736-1737 [7] Pfaffl M W. A new mathematical model for relative quantification in real-time rt-pcr[J]. Nucleic Acids Research, 2001, 29(9):e45-e45 [8] Løvdal T, Lillo C. Reference gene selection for quantitative real-time pcr normalization in tomato subjected to nitrogen, cold, and light stress[J]. Analytical Biochemistry, 2009, 387(2):238-242 [9] Dheda K, Huggett J F, Chang J S, et al. The implications of using an inappropriate reference gene for real-time reverse transcription pcr data normalization[J]. Analytical Biochemistry, 2005, 344(1):141-143 [10] Duhoux A, Délye C. Reference genes to study herbicide stress response in lolium sp.:Up-regulation of p450 genes in plants resistant to acetolactate-synthase inhibitors[J]. PloS One, 2013, 8(5):e63576 [11] Petit C, Pernin F, Heydel J M, et al. Validation of a set of reference genes to study response to herbicide stress in grasses[J]. BMC Research Notes, 2012, 5(1):18 [12] Wang T, Hao R, Pan H, et al. Selection of suitable reference genes for quantitative real-time polymerase chain reaction in prunus mume during flowering stages and under different abiotic stress conditions[J]. Journal of the American Society for Horticultural Science, 2014, 139(2):113-122 [13] Sang J, Zhennan W, Li M, et al. Icg:A wiki-driven knowledgebase of internal control genes for rt-qpcr normalization[J]. Nucleic Acids Research, 2017, 46(D1):D121-D126 [14] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative rt-pcr data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7):research0034 [15] Yang Z, Chen Y, Hu B, et al. Identification and validation of reference genes for quantification of target gene expression with quantitative real-time pcr for tall fescue under four abiotic stresses[J]. PloS One, 2015, 10(3):e0119569 [16] Andersen C L, Jensen J L, rntoft T F. Normalization of real-time quantitative reverse transcription-pcr data:A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15):5245 [17] Pfaffl M W, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:Bestkeeper-excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6):509-515 [18] Migocka M, Papierniak A. Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators[J]. Molecular Breeding, 2011, 28(3):343-357 [19] Silver N, Best S, Jiang J, et al. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time pcr[J]. BMC Molecular Biology, 2006, 7(1):33 [20] Xie F, Xiao P, Chen D, et al. Mirdeepfinder:A mirna analysis tool for deep sequencing of plant small rnas[J]. Plant Molecular Biology, 2012, 80(1):75-84 [21] Ruijter J M, Ramakers C, Hoogaars W M H, et al. Amplification efficiency:Linking baseline and bias in the analysis of quantitative pcr data[J]. Nucleic Acids Research, 2009, 37(6):e45 [22] Sgamma T, Pape J, Massiah A, et al. Selection of reference genes for diurnal and developmental time-course real-time pcr expression analyses in lettuce[J]. Plant Methods, 2016, 12(1):21 [23] Beckie H J, Warwick S I, Sauder C A. Basis for herbicide resistance in canadian populations of wild oat (avena faTUA)[J]. Weed Science, 2017, 60(1):10-18 [24] Wrzesińska B, Kierzek R, Obrępalska-Stęplowska A. Evaluation of six commonly used reference genes for gene expression studies in herbicide-resistant avena fatua biotypes[J]. Weed Research, 2016, 56(4):284-292 [25] Udvardi M K, Czechowski T, Scheible W-R. Eleven golden rules of quantitative rt-pcr[J]. The Plant Cell, 2008, 20(7):1736 [26] De Spiegelaere W, Dern-Wieloch J, Weigel R, et al. Reference gene validation for rt-qpcr, a note on different available software packages[J]. PloS One, 2015, 10(3):e0122515 [27] Bhatia P, Taylor W R, Greenberg A H, et al. Comparison of glyceraldehyde-3-phosphate dehydrogenase and 28 s-ribosomal rna gene expression as rna loading controls for northern blot analysis of cell lines of varying malignant potential[J]. Analytical Biochemistry, 1994, 216(1):223-226 [28] Zhang J, Snyder S H. Nitric oxide stimulates auto-adp-ribosylation of glyceraldehyde-3-phosphate dehydrogenase[J]. Proceedings of the National Academy of Sciences, 1992, 89(20):9382 [29] Jarošová J, Kundu J K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time rt-pcr[J]. BMC Plant Biology, 2010, 10(1):146 [30] Rapacz M, Stępień A, Skorupa K. Internal standards for quantitative rt-pcr studies of gene expression under drought treatment in barley (hordeum vulgare l.):The effects of developmental stage and leaf age[J]. Acta Physiologiae Plantarum, 2012, 34(5):1723-1733 [31] Wang M, Lu S. Validation of suitable reference genes for quantitative gene expression analysis in panax ginseng[J]. Frontiers in Plant Science, 2016, 6:1259 [32] Taylor C M, Jost R, Erskine W, et al. Identifying stable reference genes for qrt-pcr normalisation in gene expression studies of narrow-leafed lupin (lupinus angustifolius l.)[J]. PloS One, 2016, 11(2):0148300 [33] Mallona I, Lischewski S, Weiss J, et al. Validation of reference genes for quantitative real-time pcr during leaf and flower development in petunia hybrida[J]. BMC Plant Biology, 2010, 10(1):4 [34] Delporte M, Legrand G, Hilbert J L, et al. Selection and validation of reference genes for quantitative real-time pcr analysis of gene expression in cichorium intybus[J]. Frontiers in Plant Science, 2015, 6(651):1-11 [35] Chen Y, Tan Z, Hu B, et al. Selection and validation of reference genes for target gene analysis with quantitative rt-pcr in leaves and roots of bermudagrass under four different abiotic stresses[J]. Physiologia Plantarum, 2015, 155(2):138-148 [36] 高金玉, 郭慧琴, 曹路, 等. 模拟增温下短花针茅实时荧光定量内参基因的筛选及验证[J].草地学报, 2017, 25(5):1020-1028 [37] 蒋晓梅, 严海东, 张新全, 等. 鸭茅根组织实时定量分析中候选内参基因的筛选[J].草地学报, 2014, 22(4):847-853 [38] Silveira E, Alves-Ferreira M, Guimarães L, et al. Selection of reference genes for quantitative real-time pcr expression studies in the apomictic and sexual grass brachiaria brizantha[J]. BMC Plant Biology, 2009, 9(1):84 [39] Han X, Lu M, Chen Y, et al. Selection of reliable reference genes for gene expression studies using real-time pcr in tung tree during seed development[J]. PloS One, 2012, 7(8):e43084 [40] Chao W S, Doğramaci M, Foley M E, et al. Selection and validation of endogenous reference genes for qrt-pcr analysis in leafy spurge (euphorbia esula)[J]. PloS One, 2012, 7(8):e42839 [41] Hongle X, Jun L, Renhai W, et al. Identification of reference genes for studying herbicide resistance mechanisms in japanese foxtail[J]. Weed Science, 2017, 65(5):557-566 [42] Faccioli P, Ciceri G P, Provero P, et al. A combined strategy of "in silico" transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies[J]. Plant Molecular Biology, 2007, 63(5):679-688 [43] Robledo D, Hernández-Urcera J, Cal R M, et al. Analysis of qpcr reference gene stability determination methods and a practical approach for efficiency calculation on a turbot (scophthalmus maximus) gonad dataset[J]. BMC Genomics, 2014, 15(1):648 [44] Bustin S A. Why the need for qpcr publication guidelines?-The case for miqe[J]. Methods, 2010, 50(4):217-226 [45] Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis using real-time pcr[J]. Methods, 2010, 50(4):227-230 |