[1] 曹志磊, 俞花美, 葛成军, 等. 可溶性有机物对土霉素在土壤中吸附-解吸的影响[J]. 热带作物学报, 2018, 39(4):825-831 [2] 贾汉忠, 刘子雯, 石亚芳, 等. 不同植被恢复类型的沙地土壤中溶解性有机质演变特征[J]. 科学通报, 2021, 66(34):4425-4436 [3] MCTIERNAN K B, JARVIS S C, SCHOLEFIELD D, et al. Dissolved organic carbon losses from grazed grasslands under different management regimes[J]. Water Research, 2001, 35(10):2565-2569 [4] WHITE R P, MURRAY S, ROHWEDER M, et al. Pilot analysis of global ecosystems:Grassland ecosystems[J]. World Resources Institute, 2000, 4(6):275 [5] FANG H J, CHENG S L, YU G R, et al. Experimental nitrogen deposition alters the quantity and quality of soil dissolved organic carbon in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Applied Soil Ecology, 2014, 81:1-11 [6] JONES D L, SIMFUKWE P, HILL P W, et al. Evaluation of dissolved organic carbon as a soil quality indicator in national monitoring schemes[J]. PLos One, 2014, 9(3):e90882 [7] 谢理, 杨浩, 渠晓霞, 等. 滇池典型陆生和水生植物溶解性有机质组分的光谱分析[J]. 环境科学研究, 2013, 26(1):72-79 [8] 常汉达, 王晶, 张凤华. 基于傅里叶红外光谱弃耕地开垦前后土壤有机质结构变化分析[J]. 土壤通报, 2019, 50(2):333-340 [9] 刘翥, 杨玉盛, 司友涛, 等. 植被恢复对侵蚀红壤可溶性有机质含量及光谱学特征的影响[J]. 植物生态学报, 2014, 38(11):1174-1183 [10] 王姝, 秦纪洪, 谢冰心, 等. 川西高寒土壤DOM荧光特征研究[J]. 四川农业大学学报, 2020, 38(3):280-289, 298 [11] 张苗苗, 陈伟, 赵军, 等. 利用方式对青海省高寒草甸土壤可溶性有机质光谱学特性的影响[J]. 草地学报, 2019, 27(1):71-79 [12] HU G Y, DONG Z B, WEI Z H, et al. Spatial and temporal change of desertification land of Zoige Basin in recent 30 years and its cause analysis[J]. Advance in Earth Sciences, 2009, 24(8):908-916 [13] 唐希颖, 武红, 董金玮, 等. 沙化和退化状态对甘南草地生态系统固碳的影响[J]. 生态学杂志, 2022, 41(2):278-286 [14] 魏晶晶, 秦瑞敏, 张中华, 等. 不同退化程度高寒草地植物群落与土壤性质变化及相关性分析[J]. 草地学报, 2022, 30(11):3035-3045 [15] 阎欣, 刘任涛, 安慧. 土壤易氧化有机碳与溶解性有机碳对荒漠草地沙漠化过程中土壤碳库变异的表征[J]. 草业学报, 2018, 27(11):15-25 [16] 钱虹宇, 蒲玉琳, 郎山鑫, 等. 土壤有机磷矿化特征对高寒草甸退化及温度的响应[J]. 草业学报, 2023, 32(10):15-27 [17] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科学技术出版社, 2000:107-108 [18] 肖好燕, 刘宝, 余再鹏, 等. 亚热带典型林分对表层和深层土壤可溶性有机碳、氮的影响[J]. 应用生态学报, 2016, 27(4):1031-1038 [19] LIU S S, ZHU Y R, LIU L Z, et al. Cation-induced coagulation of aquatic plant-derived dissolved organic matter:Investigation by EEM-PARAFAC and FT-IR spectroscopy[J]. Environmental Pollution, 2018, 234:726-734 [20] 占新华, 周立祥, 沈其荣, 等. 污泥堆肥过程中水溶性有机物光谱学变化特征[J]. 环境科学学报, 2001, 21(4):470-474 [21] 贾培龙. 辽东栎枯落物分解过程中有机碳官能团与有机碳组分变化研究[D]. 杨凌:西北农林科技大学, 2020:6-60 [22] WU J Q, MA W W, LI G, et al. Vegetation degradation along water gradient leads to soil active organic carbon in loss in Gahai wetland[J]. Ecological Engineering, 2020, 145:105666 [23] 郭碧花, 张雪梅, 刘金平, 等. 坡度对高寒草甸公路护坡土壤形状及沙化表现得影响[J]. 草业学报, 2022, 31(11):15-24 [24] 王明理. 高寒草场优势毒杂草黄帚橐吾对牧草化感作用的研究[D]. 兰州:西北师范大学, 2006:35-41 [25] 常单娜, 曹卫东, 白金顺, 等. 绿肥对华北潮土土壤可溶性有机物的影响[J]. 光谱学与光谱分析, 2017, 37(1):221-226 [26] WANG D, ZHOU H, ZUO J, et al. Responses of soil microbial metabolic activity and community structure to different degraded and restored grassland gradients of the Tibetan Plateau[J]. Frontiers in Plant Science, 2022, 13:770315 [27] JAFARIAN Z, KAVIAN A. Effects of land-use change on soil organic carbon and nitrogen[J]. Communications in Soil Science and Plant Analysis, 2013, 44:339-346 [28] HSIAO-TIEN H, COREY R L, MATTHEW J W A M, et al. Investigation of soil organic carbon composition across a subalpine catchment[J]. Soil Systems, 2018, 2(6):1-23 [29] 张苗苗. 青海省主要草地土壤理化性质和可溶性有机质光谱特性及其对利用方式的响应[D]. 兰州:甘肃农业大学, 2019:54-75 [30] 陈鲜妮, 来航线, 田霄鸿, 等. 接种微生物条件下牛粪+麦秸堆腐过程有机组分的动态变化[J]. 农业环境科学学报, 2009, 28(11):2417-2421 [31] HE C F, ZHU H J, KONG X Q. Environmental effects of returning rice and wheat straw to fields[J]. Agricultural Science & Technology, 2017, 18(9):1710-1715 [32] 刘书路, 张浩, 田文凤, 等. 不同土壤水分条件下香樟凋落叶覆盖对土壤碳氮循环的影响[J]. 应用生态学报, 2019, 30(1):85-94 [33] OLEFELDT D, TURETSKY M R, BLODAU C. Altered composition and microbial versus UV-mediated degradation of dissolved organic matter in boreal soils following wildfire[J]. Ecosystems, 2013, 16:1396-1412 |