[1] 高瑞芳,张建国. 能源草研究进展[J]. 草原与草坪,2013,33(1):89-96
[2] 吴倩,张磊,黄志平,等. 转录组测序及其在野生大豆基因资源发掘中的应用[J]. 大豆科学,2013,32(6):845-851
[3] 罗纯,张青林,罗正荣. 第二代测序技术在植物遗传研究中的应用[J]. 广东农业科学,2015(3):186-192
[4] Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics,2009,10(1):57-63
[5] 黄小花,许锋,程华,等. 转录组测序在高等植物中的研究进展[J]. 黄冈师范学院学报,2014,34(6):29-35
[6] Xu P, Liu Z W, Fan X Q, et al. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress[J]. Gene,2013,525(1):26-34
[7] Wang X C, Zhao Q Y, Ma C L, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation[J]. BMC Genomics,2013,14:415-429
[8] Tang S, Liang H Y, Yan D H, et al. Populus euphratica:the transcriptomic response to drought stress[J]. Plant Molecular Biology,2013,83(6):539-557
[9] Xu W R, Li R M, Zhang N B, et al. Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress[J]. Plant Molecular Biology,2014,86(4):527-541
[10] Liu H, Yang B O, Zhang J H, et al. Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress[J]. Plos One,2012,7(11):e50785
[11] Chen H Y, Chen X L, Chen D, et al. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance:Solanum lycopersicum and Solanum habrochaites[J]. BMC Plant Biology,2015,15:132-148
[12] Wang J M, Yang Y, Liu X H, et al. Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium[J]. BMC Genomics,2014,15:203-223
[13] Shen X Y, Wang Z L, Song X F. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis[J]. Plant Molecular Biology,2014,86(3):303-317
[14] Yate S A, Swain M T, Hegarty M J, et al. De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification[J]. BMC Genomic,2014,15:453-468
[15] Ferreira T H, Gentile A, Vilela R D, et al. microRNAs associated with drought response in the bioenergy crop sugarcane(Saccharum spp.)[J]. Plos One,2012,7(10):e46703
[16] Xie F L, Charles N S J, Taki F A, et al. High-throughtput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress[J]. Plant Biotechnology Journal,2014,12(3):354-366
[17] Thiebaut F, Grativol C, Mariana C B, et al. Computational identification and analysis of novel sugarcane microRNAs[J]. BMC Genomics,2012,13:290-304
[18] Zhu J F, Li W F, Yang W H, et al. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress[J]. Plant Cell Reports,2013,32(9):1339-1349
[19] Lin Q, Wang C Y, Dong W C, et al. Transcriptome and metabolome analyses of sugar and organic acid metabolism in Ponkan (Citrus reticulata) fruit during fruit maturation[J]. Gene,2015,554(1):64-74
[20] Feng C, Chen M, Xu C J, et al. Transcriptomic analysis of Chinese bayberry(Myrica rubra) fruit development and ripening using RNA-Seq[J]. BMC Genomics,2012,13:19-34
[21] Yang S S, Tu Z J, Cheung F, et al. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems[J]. BMC Genomics,2011,12:199-218
[22] 周华,张新,刘腾云,等. 高通量转录组测序的数据分析与基因发掘[J]. 江西科学,2012,30(5):608-611
[23] Huang H H, Xu L L, Tong Z K, et al. De novo characterization of the Chinese fir(Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis[J]. BMC Genomics,2012,13:648-662
[24] 张琳,范晓明,林青,等. 锥栗种仁转录组及淀粉和蔗糖代谢相关酶基因的表达分析[J]. 植物遗传资源学报,2015,16(3):603-611
[25] Sara A, Alberto F, Enrico G, et al. Characterization of transcriptional complexity during berry development in vitis vinifera using RNA-Seq[J]. Plant physiology,2010,152(4):1787-1795
[26] Xie M, Huang Y, Zhang Y P, et al. Transcriptome profiling of fruit development and maturation in Chinese white pear(Pyrus bretchneisderi Rehd.)[J]. BMC Genomics,2013,14:823-843
[27] Sun R Z, He F, Lan Y B, et al. Transcriptome comparison of Cabernet Sauvignon grape berries from two regions with distinct climate[J]. Gene,2015,178:43-54
[28] Mizrachi E, Hefer C A, Ranik M, et al. De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq[J]. BMC Genomics,2010,11:681-693
[29] Wei L B, Miao H M, Li C, et al. Development of SNP and InDel markers via de novo transcriptome assembly in Sesamum indicum L.[J]. Molecular breeding,2014,34(4):2205-2217
[30] Blanca J, Esteras C, Ziarsolo P, et al. Transcriptome sequencing for SNP discovery across Cucumis melo[J]. BMC Genomics,2012,13:280-298
[31] Wu T, Xiao L J, Chen S Y, et al. Transcriptomics and comparative analysis of three Juglans species:J.regia, J.sigillata and J.cathayensis[J]. Plant Omics,2015,8(4):361-371
[32] 李小白,向林,罗洁,等. 转录组测序(RNA-seq)策略及其数据在分子标记开发商的应用[J]. 中国细胞生物学学报,2013,35(5):720-726,740
[33] 王莉衡. 能源植物的研究与开发利用[J]. 化学与生物工程,2010,27(4):6-8
[34] Ferreira T H, Gentile A, Vilela R D, et al. microRNAs associated with drought response in the bioenergy crop sugarcane(Saccharum spp.)[J]. Plos One,2012,7(10):e46703
[35] Thiebaut F, Grativol C, Mariana C B, et al. Computational identification and analysis of novel sugarcane microRNAs[J]. BMC Genomics,2012,13:290-304
[36] Wu Q B, Xu L P, Guo J L, et al. Transcriptome profile analysis of sugarcane responses to Sporisorium scitaminea infection using solexa sequencing technology[J]. BioMed Research International,2013(339):8-8
[37] Salazar M M, Nascimento L C, Camargo E L O, et al. Xylem transcription profiles indicate potential metabolic responses for economically relevant characteristics of Eucalyptus species[J]. BMC Genomics,2013,14:201-214
[38] Chen Q Z, Guo W S, Feng L Z, et al. Transcriptome and proteome analysis of Eucalyptus infected with Calonectria pseudoreteaudii[J].Journal of Proteomics,2015,115:117-131
[39] Wang Z Y, Fang B P, Chen J Y, et al. De novo assembly and characterization of root transcriptome using Illumina paired-enf sequencing and development of cSSR markers in sweetpotato(Ipomoea batatas)[J]. BMC Genomics,2010,11:726-740
[40] 古英洪,陶向,王海燕,等. 甘薯的病毒种类及其基因表达分析[C]//中国遗传学研究-遗传学进步推动中国西部经济与社会发展——2011中国遗传学大会论文摘要汇编,2011
[41] Xie F L, Caitlin E, Burklew, et al. De novo sequencing and a comprehensive analysis of purple sweet potato(Ipomoea batatas L.)transcriptome[J]. Planta,2012,236(1):101-113
[42] Firon N, LaBonte D, Villordon A, et al. Transcriptional profiling of sweetpotato(Ipomoea batatas) roots indicates down-regulation of ligin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation[J]. BMC Genomics,2013,14:460-484
[43] Thimmapuram J, Bhide K, Kal V, et al. Comparative transcriptome analysis of cultivated sweet potato (Ipomea batatas) and wild ancestor (I.trifida)[C]//The largest Ag-Genomics meeting in the world——Plant & Animal Genome XX III,2015:10-14
[44] Calviño M, Bruggmana R, Messing J. Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems[J]. BMC Genomics,2011,12:356-369
[45] Sui N, Yang Z, Liu M, et al. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves[J]. BMC Genomics,2015,16:534-552
[46] Klein R, Ware D, Klein P. Transcriptome analysis of cell wall related genes in high biomass energy sorghum[C]//The largest Ag-Genomics meeting in the world——Plant&Animal Genome XX III,2014:11-15
[47] Wang H B, Zou Z R, Wang S S, et al. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.[J]. Plos One,2013,8(12):e82817
[48] Juntawong P, Sirikhachornkit A, Pimjan R, et al. Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling[J]. Front Plant Science,2014,5:658-671
[49] Meyer E, Aspinwall M J, Lowry D B, et al. Integrating transcriptional,metabolomic, and physiological responses to drought stress and recovery in switchgrass(Panicum virgatum L.)[J]. BMC Genomics,2014,15:527-542
[50] Allie F, Pierce E J, Okoniewski M J, et al. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection[J]. BMC Genomics,2014,15:1006-1036
[51] Barling A, Swaminathan K, Mitros T, et al. A detailed gene expression study of the Miscanthus genus reveals changes in the transcriptome associated with the rejuvenation of spring rhizomes[J]. BMC Genomics,2013,14:864-880
[52] Meyer E, Logan T L, Juenger T E. Transcriptome analysis and gene expression atlas for Panicun hallii var.filipes, a diploid model for biofuel research[J]. The Plant Journal,2012,70(5):879-890
[53] Gedye K, Jose G H, Ban Y G, et al. Investigation of the transcriptome of Prairie Cord Grass, a new cellulosic biomass crop[J]. Plant Genome,2010,3(2):69-80
[54] 鄢家俊,白史且,梁绪振,等. 生物质能源植物——斑茅种质资源考察与收集[J]. 草业与畜牧,2009,3:29-31
[55] 张瑜,鄢家俊,白史且,等. 野生割手密种质资源的考察与收集[J]. 湖北农业科学,2015,54(2):378-381
[56] 宗俊勤,郭爱桂,陈静波,等. 7种多年生禾草作为能源植物潜力的研究[J]. 草业科学,2012,29(5):809-813 |