[1] Kader J C,Taulavuori K,Munnébosch S. Environmental and Experimental Botany[J]. Environmental & Experimental Botany,2010,69(3):145-154 [2] Vig K,Megharaj M,Sethunathan N. Bioavailability and Toxicity of Cadmium to Microorganisms and Their Activities in Soil:A Review[J]. Advances in Environmental Research,2003,8(1):121-135 [3] Zhang Y,Chen Y,Meng A, et al. Experimental and thermodynamic investigation on transfer of cadmium influenced by sulfur and chlorine during municipal solid waste (MSW) incineration[J]. Journal of Hazardous Materials,2008,153(1-2):309-319 [4] Robertsa T L. Cadmium and Phosphorous Fertilizers:The Issues and the Science[J]. Procedia Engineering,2014,83(9):52-59 [5] 刘柿良. 外源NO对两种园林草本植物重金属胁迫的调节效应及其机制[D]. 成都:四川农业大学,2016:2-3 [6] Špela K,Iztok A,Kump P, et al. Influence of CdCl2,and CdSO4,supplementation on Cd distribution and ligand environment in leaves of the Cd hyperaccumulator Noccaea (Thlaspi) praecox[J]. Plant and Soil,2013,370(1-2):125-148 [7] Zhang Z C,Chen B X,Qiu B S. Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants[J]. Plant,Cell & Environment,2010,33(8):1248-1255 [8] Daud M K,Sun Y,Dawood M,et al. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars[J]. Journal of Hazardous Materials,2009,161(1):463-473 [9] Song Y,Jin L,Wang X. Cadmium absorption and transportation pathways in plants[J]. International Journal of Phytoremediation,2017,19(1-2):133-141 [10] Lysenko E A,Klaus A A,Pshybytko N L,et al. Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize[J]. Photosynthesis Research,2015,125(1-2):291-303 [11] Carvalho B A,Gabriel C M,Carvalho R,et al. Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution:Nutrient contents and translocation[J]. Ecotoxicology and Environmental Safety,2012,86:176-181 [12] Potters G,Pasternak T P,Guisez Y,et al. Stress-induced morphogenic responses:growing out of trouble?[J]. Trends in Plant Science,2007,12(3):98-105 [13] 韩娟. 油菜素抵抗重金属毒性的生理机制研究[J]. 山西农经,2018(15):115 [14] 田国忠,李怀方,裘维蕃. 植物过氧化物酶研究进展[J]. 武汉植物学研究,2001,19(4):332-344 [15] 牛奎举. 外源5-氨基乙酰丙酸对干旱胁迫下草地早熟禾光合作用的调控机制[D]. 兰州:甘肃农业大学,2018:5-6 [16] 徐超. 脯氨酸与重金属耐性和富集的研究进展[J]. 中国资源综合利用,2018,36(02):80-83 [17] Sharma S S,Schat H,Vooijs R. In vitro alleviation of heavy metal-induced enzyme inhibition by proline[J]. Phytochemistry,1998,6(49):1531-1535 [18] Mehta S K,Gaur J P. Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris[J]. The New Phytologist,1999,143(2):253-259 [19] Cobbett C S. Phytochelatin biosynthesis and function in heavy-metal detoxification[J]. Current Opinion in Plant Biology,2000,3(3):211-216 [20] Siripornadulsil S,Traina S,Verma D P,et al. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae[J]. The Plant Cell,2002,14(11):2837-2847 [21] 翟晓虎,杨海锋,陈慧英,等. 丙二醛的毒性作用及检测技术研究进展[J]. 上海农业学报,2018,34(01):144-148 [22] Zheng C,Jiang D,Liu F,et al. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity[J]. Environmental and Experimental Botany,2009,67(1):222-227 [23] Piterkova J,Luhova L,Hofman J,et al. Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions[J]. Annals of Botany,2012,110(4):767-776 [24] 王逸筠,胡美美,崔秀敏,等. 铜、镉胁迫下外源NO介导的番茄解毒途径[J]. 应用生态学报,2018,29(12):4199-4207 [25] 林二阁,杨懿德,李怀奇,等. 盆栽试验中外源NO对干旱胁迫下烤烟光合日变化和营养元素含量的影响[J]. 烟草科技,2018,51(5):8-14 [26] 刘光亚,张艳军,孙学振,等. 一氧化氮对植物淹水伤害的缓解作用及其机制[J/OL]. http://kns.cnki.net/kcms/detail/46.1068.S.20190109.1135.004.html,2019-01-09/2019-09-11 [27] 高彬. 一氧化氮和冷信号对桃果实细胞膜脂肪酸代谢及膜脂相变温度的调控作用[D]. 泰安:山东农业大学,2018:8-9 [28] 陈志新,陈伟楠,胡增辉,等. 一氧化氮对盐胁迫下八宝景天叶片生理特性的影响[J]. 北京农学院学报,2018,33(03):66-72 [29] Cao X,Zhu C,Zhong C,et al. Nitric oxide synthase-mediated early nitric oxide burst alleviates water stress-induced oxidative damage in ammonium-supplied rice roots[J]. BMC Plant Biology,2019,19(1):108-122 [30] Liu T,Xu J,Li J,et al. NO is involved in JA- and H2O2-mediated ALA-induced oxidative stress tolerance at low temperatures in tomato[J]. Environmental and Experimental Botany,2019,161:334-343 [31] Liu S L,Yang R J,Ma M D,et al. Effects of exogenous NO on the growth,mineral nutrient content,antioxidant system,and ATPase activities of Trifolium repens L. plants under cadmium stress[J]. Acta Physiologiae Plantarum,2015,37(1),1721-1737 [32] 高晓霞. 内源NO和活性氧对小麦幼苗生理特性调控的研究[D]. 兰州:西北师范大学,2017:2-3 [33] 鲜靖苹,柴澍杰,王勇,等. 镉胁迫对草地早熟禾生长与生理代谢的影响[J]. 核农学报,2019,33(01):176-186 [34] 孙吉雄. 草坪学[M]. 北京:中国农业出版社,2008:85-88 [35] Rio L A D,Corpas F J,Barroso J B. Nitric oxide and nitric oxide synthase activity in plants[J]. Phytochemistry (Amsterdam),2004,65(7):783-792 [36] Mackerness A H,John C F,Jordan B A,et al. Early signaling components in ultraviolet-B responses:distinct roles for different reactive oxygen species and nitric oxide[J]. Febs Letters,2001,489(2-3):237-242 [37] Deng M,Moureaux T,Caboche M. Tungstate,a Molybdate Analog Inactivating Nitrate Reductase,Deregulates the Expression of the Nitrate Reductase Structural Gene[J]. Plant physiology,1989,91(1):304-309 [38] Bright J,Desikan R,Hancock J T,et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis[J]. Plant Journal,2006,45(1):113-122 [39] Keszler A,Zhang Y,Hogg N. Reaction between nitric oxide,glutathione,and oxygen in the presence and absence of protein:How are S-nitrosothiols formed?[J]. Free Radical Biology & Medicine,2010,48(1):55-64 [40] 陈建勋. 植物生理学实验指导[M]. 广州:华南理工大学出版社,2002:66-72 [41] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000:164-260 [42] Cui J X,Zhou Y H,Ding J G,et al. Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber[J]. Plant,Cell & Environment,2011,34(2):347-358 [43] Gill S S,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930 [44] 陈润娟,雷娅伟,白小明,等. 外源NO对野生早熟禾幼苗抗寒性的影响[J]. 中国沙漠,2017,37(06):1171-1179 [45] 辛夏青. 外源NO对紫花苜蓿抗旱性及主要含氮物质合成代谢的影响[D]. 兰州:甘肃农业大学,2018:26-27 [46] 刘安琪. NO对小麦幼苗铜镉胁迫的缓解效应及其蛋白质组学研究[D]. 新乡:河南师范大学,2018:11-14 [47] Shanmugaraj B M,Malla A,Ramalingam S. Cadmium Stress and Toxicity in Plants:An Overview[G]//Cadmium Toxicity and Tolerance in Plants. Elsevier,2019:1-17 [48] 袁思莉,余垚,万亚男,等.硒缓解植物重金属胁迫和累积的机制[J]. 农业资源与环境学报,2014,31(06):545-550 [49] 高桂青,简敏菲,卢龙,等. Cu2+、Cd2+胁迫对马来眼子菜光合色素及光合荧光特性的影响[J]. 应用与环境生物学报,2019,25(03):517-523 [50] 吴旭红,吕成敏,冯晶旻. 外源一氧化氮(NO)对低温胁迫下南瓜幼苗氧化损伤的保护效应[J]. 草业学报,2016,25(12):161-169 [51] 尚玉坤,刘思凯,陈杨晗,等. 镉胁迫对东营野生大豆幼苗抗氧化系统及可溶性蛋白的影响[J]. 四川农业大学学报,2019,37(01):15-21 [52] 古洪双,赵子豪,楼锦锋,等. 氮沉降对镉胁迫下南方四季杨生物量积累和光合生理的影响[J]. 东北林业大学学报,2019,47(1):8-11,21 [53] 张倩,贺明荣,陈为峰,等. 外源一氧化氮与水杨酸对盐胁迫下小麦幼苗生理特性的影响[J]. 土壤学报,2018,55(5):1254-1263 [54] 杨杨. 一氧化氮参与调控番茄果实采后成熟衰老信号机制研究[D]. 北京:中国农业大学,2018:40-42 [55] 邵将,陈瑶,刘大林,等. 硅对镉胁迫下不同狼尾草属牧草生理代谢的影响[J]. 草地学报,2018,26(5):1223-1228 [56] 康小虎,康东东,冷艳,等. 镉胁迫下柠条锦鸡儿种子萌发及幼苗生长的抗性分析[J]. 兰州交通大学学报,2018,37(04):93-98 [57] 庞亚琴,任彩婷,徐秋曼. 解淀粉芽孢杆菌HM618对镉胁迫下小麦幼苗生长的影响[J]. 天津师范大学学报(自然科学版),2018,38(04):55-59 [58] 王芳,彭云玲,方永丰,等. 外源油菜素内酯对玉米幼苗镉毒害耐受性的影响[J]. 干旱地区农业研究,2018,36(05):21-27 [59] 马晓丽,冀瑞萍,田保华,等. 一氧化氮(NO)对镉胁迫下小麦幼苗氧化损伤的影响[J]. 生物技术通报,2017,33(05):102-107 [60] Correa A N,Lombardo C,Lamattina L. Nitric oxide:an active nitrogen molecule that modulates cellulose synthesis in tomato roots[J]. New Phytologist,2008,179(2):386-396 [61] 贾向阳,种培芳,张玉洁,等. 外源NO对NaCl胁迫下红砂幼苗生长和生理特性的影响[J]. 草地学报,2019,27(03):628-636 |