[1] 邢宇,姜琦刚,李文庆,等. 青藏高原湿地景观空间格局的变化[J]. 生态环境学报,2009,18(3):1010-1015 [2] 何池全,赵魁义. 若尔盖高原湿地生物多样性保护及其可持续利用[J]. 自然资源学报,1999,14(3):238-244 [3] 闫立娟,齐文. 青藏高原湖泊遥感信息提取及湖面动态变化趋势研究[J]. 地球学报2012,33(1):65-74 [4] 谢高地,鲁春霞,冷允法,等. 青藏高原生态资产的价值评估[J]. 自然资源学报,2003,18(2):189-196 [5] 孙鸿烈,郑度,姚檀栋,等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报,2012,67(1):3-12 [6] 王根绪,李元寿,王一博,等. 近40年来青藏高原典型高寒湿地系统的动态变化[J]. 地理学报,2007,62(5):481-491 [7] 杜际增,王根绪,杨燕,等. 长江黄河源区湿地分布的时空变化及成因[J]. 生态学报,2015,35(18):6174-6182 [8] 李希来. 三江源区不同类型高寒湿地的退化与保护[J]. 青海科技,2017,24(1):35-39 [9] 李宏林. 青藏高原东部高寒湿地逆向演替序列上植物物种对土壤水分变化响应的研究[D].兰州:兰州大学,2016:79-80 [10] 姚喜喜,宫旭胤,白滨,等. 祁连山高寒牧区不同类型草地植被特征与土壤养分及其相关性研究[J]. 草地学报,2018,26(02):371-379 [11] 田雅楠,王红旗. Biolog法在环境微生物功能多样性研究中的应用[J]. 环境科学与技术,2011,34(3):50-57 [12] Bell T,Newman J A,Silverman B W,et al.The contribution of species richness and composition to bacterial services[J]. Nature,2005,436(7054):1157-1160 [13] Liu B R,Jia G M,Chen J,et al. A review of methods for studying microbial diversity in soils[J]. Pedosphere,2006,16(1):18-24 [14] Fierer N,JacksonR B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(3):626-631 [15] 李娟,赵秉强,李秀英,等. 长期不同施肥制度下几种土壤微生物学特征变化[J]. 植物生态学报,2008,32(4):891-899 [16] 刘银银,李峰,孙庆业,等. 湿地生态系统土壤微生物研究进展[J]. 应用与环境生物学报,2013,19(03):547-552 [17] 王淇. 尕海湿地退化过程中植物生物量和土壤微生物生物量的动态变化研究[D]. 兰州:甘肃农业大学,2016:32-34 [18] 李飞,刘振恒,贾甜华,等. 高寒湿地和草甸退化及恢复对土壤微生物碳代谢功能多样性的影响[J]. 生态学报,2018,38(17):6006-6015 [19] Zabinski C A,Gannon J E. Effects of recreational impacts on soil microbial communities[J]. Environ Man,1997,21(2):233-238 [20] 张骞,马丽,张中华,等. 青藏高寒区退化草地生态恢复:退化现状、恢复措施、效应与展望[J]. 生态学报,2019,39(20):7441-7451 [21] 林春英,李希来,李红梅,孙海松,韩辉邦,王启花,金立群,孙华方. 不同退化高寒沼泽湿地土壤碳氮和贮量分布特征[J]. 草地学报,2019,27(04):805-816 [22] Nair A,Ngouajio M. Soil microbial biomass,functional microbial diversity,and nematode community structure as affected by cover crops and compost in an organic vegetable production system[J].Applied Soil Ecology,2012,58:45-55 [23] Zhang T Y,Wu Y H,Zhuang L L,et al. Screening heterotrophic microalgal strains by using the Biolog method for biofuel production from organic wastewater[J]. Algal Research,2014,6:175-179 [24] Lagerlöf J,Adolfsson L,B rjesson G,Ehlers K,Vinyoles G P,Sundh I. Land-use intensification and agroforestry in the Kenyan highland:impacts on soil microbial community composition and functional capacity[J]. Applied Soil Ecology,2014,82:93-99 [25] 张超,刘国彬,薛萐,等. 黄土丘陵区不同植被类型根际微生物群落功能多样性研究[J]. 草地学报,2015,23(04):710-717 [26] 隋心,张荣涛,刘赢男,等.模拟氮沉降对三江平原小叶章湿地土壤微生物功能多样性的影响[J]. 草地学报,2016,24(06):1226-1233 [27] 周庆伍,李红歌,李安军,等. Biolog ECO解析不同产地大曲微生物群落功能多样性特征[J]. 食品与发酵技,2014,50(03):53-56 [28] Ramette A. Multivariate analyses in microbial ecology[J]. FEMS Microbiology Ecology,2007,62(2):142-160 [29] 李飞. 高寒湿地和草甸退化与恢复对土壤养分、土壤微生物及有机化合物的影响[D]. 兰州:兰州大学,2018:23-24 [30] 王颖. 青藏高原高寒草甸不同海拔土壤微生物功能多样性[D]. 邯郸:河北工程大学,2018:34 [31] 王颖,宗宁,何念鹏,张晋京,田静,李良涛. 青藏高原高寒草甸不同海拔梯度下土壤微生物群落碳代谢多样性[J]. 生态学报,2018,38(16):5837-5845 [32] 钱叶,侯怡铃,宋波,等. 龙门山地震带不同植被类型土壤微生物群落多样性分析[J]. 福建师范大学学报(自然科学版),2019,35(1):88-95 [33] Castrillo G,Teixeira P J P L,Paredes S H,et al. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature,2017,543(7646):513-518 [34] Wu G L,Ren G H,Dong Q M,Shi J J,et al. Above-and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau[J]. Clean-Soil Air Water,2014,42(3):319-323 [35] 蔡晓布,张永青,邵伟. 不同退化程度高寒草原土壤肥力变化特征[J].生态学报,2008,28(3):1034-1044 [36] Liu Z F,Fu B J,Zheng X X,Liu G H. Plant biomass,soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe:a regional scale study[J]. Soil Biology and Biochemistry,2010,42(3):445-450 [37] 文东新,杨宁,杨满元. 衡阳紫色土丘陵坡地植被恢复对土壤微生物功能多样性的影响[J]. 应用生态学报,2016,27(8):2645-2654 |