[1] 罗久富,周金星,赵文霞,等. 围栏措施对青藏高原高寒草甸群落结构和稳定性的影响[J]. 草业科学,2017,34(3):565-574 [2] 张利,周广胜,汲玉河,等. 中国草地碳储量时空动态模拟研究[J]. 中国科学:地球科学,2016,46(10):1392-1405 [3] 杨有芳,字洪标,刘敏,等. 高寒草甸土壤微生物群落功能多样性对广布弓背蚁蚁丘扰动的响应[J]. 草业学报,2017,26(1):43-53 [4] 牛犇,张立峰,马荣荣,等. 高寒草甸土壤微生物量及酶活性的研究[J]. 南开大学学报(自然科学版),2016,49(4):53-60 [5] 周宁一. 青藏高原微生物多样性研究[J]. 微生物学通报,2014,41(11):2378 [6] 余莲,封彩云. 青藏高原近期气候变化研究进展[J]. 高原山地气象研究,2012,32(3):84-88 [7] 陈利顶,傅伯杰. 干扰的类型、特征及其生态学意义[J]. 生态学报,2000(4):581-586 [8] 毛志宏,朱教君. 干扰对植物群落物种组成及多样性的影响[J]. 生态学报,2006(8):2695-2701 [9] 闫玉春,唐海萍. 草地退化相关概念辨析[J]. 草业学报,2008(1):93-99 [10] Li F L, Liu M, Li Z P,et al. Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns[J]. Applied Soil Ecology,2013(64):1-6 [11] Gryta Agata,Frąc Magdalena,Oszust Karolina. The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge[J]. Applied biochemistry and biotechnology,2014,174(4):1434-1443 [12] 付刚,沈振西. 放牧改变了藏北高原高寒草甸土壤微生物群落[J]. 草业学报,2017,26(10):170-178 [13] 苟燕妮,南志标. 放牧对草地土壤微生物的影响[J]. 草业学报,2015,24(10):194-205 [14] 牛磊,刘颖慧,李悦,欧阳胜男. 西藏那曲地区高寒草甸不同放牧方式下土壤微生物群落结构特征[J]. 应用生态学报,2015,26(08):2298-2306 [15] Ika Djukic,Franz Zehetner,Axel Mentler,et al. Microbial community composition and activity in different Alpine vegetation zones[J]. Soil Biology and Biochemistry,2010,42(2):155-161 [16] 李民赞,王琦,汪懋华. 一种土壤电导率实时分析仪的试验研究[J]. 农业工程学报,2004,20(1):51-55 [17] 刘广明,杨劲松. 土壤含盐量与土壤电导率及水分含量关系的实验研究[J]. 土壤通报,2001,32(50):85-87 [18] 刘广明,杨劲松,姚荣江. 影响土壤浸提液电导率的盐分化学性质要素及其强度研究[J]. 土壤学报,2005,42(2):247-252 [19] 朱平,陈仁升,宋耀选,等. 祁连山不同植被类型土壤微生物群落多样性差异[J]. 草业学报,2015,24(06):75-84 [20] 王楠楠,韩冬雪,孙雪,等. 降水变化对红松阔叶林土壤微生物功能多样性的影响[J]. 生态学报,2017,37(03):868-876 [21] Kirk Jennifer L,Beaudette Lee A,Hart Miranda,et al. Methods of studying soil microbial diversity.[J]. Journal of microbiological methods,2004,58(2):169-188 [22] Nilsson M C,Wardle D A,DeLuca T H. Belowground and aboveground consequences of interactions between live plant species mixtures and dead organic substrate mixtures[J]. Oikos,2007,117(3):439-449 [23] 马源,李林芝,张德罡,等. 退化高寒草甸优势植物根际与非根际土壤养分及微生物量的分布特征[J]. 草地学报,2019,27(4):797-804 [24] Xue X,Guo J,Han B,et al. The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau[J]. Geomorphology,2009,108(3-4):182-190 [25] 鲍士旦. 土壤农化分析[M]. 第3版.北京:中国农业出版社,2000:45-175 [26] Garland J L,Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization.[J]. Applied and environmental microbiology,1991,57(8):2351-2359 [27] 张镱锂,刘林山,摆万奇,等. 黄河源地区草地退化空间特征[J]. 地理学报,2006,61(1):3-14 [28] 覃潇敏,郑毅,汤利,等. 玉米与马铃薯间作对根际微生物群落结构和多样性的影响[J]. 作物学报,2015,41(6):919-928 [29] 申卫收,林先贵,张华勇,等. 不同施肥处理下蔬菜塑料大棚土壤微生物活性及功能多样性[J]. 生态学报,2008,28(6):2682-2689 [30] Michiel Rutgers,Marja Wouterse,Sytske M. Drost,et al. Monitoring soil bacteria with community-level physiological profiles using Biolog TM ECO-plates in the Netherlands and Europe[J]. Applied Soil Ecology,2016,97(01)23-35 [31] 尹亚丽,王玉琴,李世雄,等. 三江源区退化高寒草甸土壤微生物群落季节特征研究[J]. 生态环境学报,2018,27(10):1791-1800 [32] Smith J L,Paul E A. The Significance of Soil Microbial Biomass Estimations[M]. New York:Marcel Dekker,1990:357-396 [33] 李飞,刘振恒,贾甜华,等. 高寒湿地和草甸退化及恢复对土壤微生物碳代谢功能多样性的影响[J]. 生态学报,2018,38(17):6006-6015 [34] Bradley P. Degens,Louis A. Schipper,Graham P. Sparling,et al. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities[J]. Soil Biology and Biochemistry,2000,32(2)189-196 [35] Shu-Rong Xiang,Allen Doyle,Patricia A. Holden,et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology and Biochemistry,2008,40(9)2281-2289 [36] 张玉琪,梁婷,张德罡,等. 祁连山东段退化高寒草甸土壤水分入渗的变化及团聚体对水分入渗的影响[J]. 草地学报,2020,28(2):500-508 [37] 郭金瑞,宋振伟,朱平,等. 长期不同种植模式对东北黑土微生物群落结构与土壤理化性质的影响[J]. 土壤通报,2016,47(2):353-359 |