[1] STOCKER T F, QIN D, PLATTBER G K, et al. Climate change 2013:The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambredge University Press, 2013:17 [2] PECL G T, ARAUÚJO M B, BELL J D. Biodiversity redistribution under climate change:Impacts on ecosystems and human well-being[J]. Science, 2017, 355(6332):eaai9214 [3] HOPPING K A, KNAPP A K, DORJI T, et al. Warming and land use change concurrently erode ecosystem services in Tibet[J]. Global Change Biology, 2018, 24(11):5534-5548 [4] 杨元合.全球变化背景下的高寒生态过程[J]. Chinese Journal of Plant Ecology, 2018, 42(1):1-5 [5] 尕藏加, 斯确多吉, 索南吉, 等.高寒草甸茎直黄芪物候对模拟季节性不对称增温的响应[J]. 草地学报, 2021, 29(4):694-700 [6] LIU H, MI Z, LIN L, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16):4051-4056 [7] ZHOU Z, WANG C, LUO Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature communications, 2020, 11(1):3072 [8] YUAN M M, GUO X, WU L, et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change, 2021, 11(4):343-348 [9] SMITH S E, READ D J. Mycorrhizal Symbiosis[M]. Third Edition. Great Britain:Academic Press of Elsevier, 2008:30 [10] 高萍, 李芳, 郭艳娥, 等.丛枝菌根真菌和根瘤菌防控植物真菌病害的研究进展[J]. 草地学报, 2017, 25(2):236-242 [11] TESTE F P, KARDOL P, TURNER B L, et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands[J]. Science, 2017, 355(6321):173-176 [12] YANG X, MARIOTTE P, GUO J, et al. Suppression of arbuscular mycorrhizal fungi decreases the temporal stability of community productivity under elevated temperature and nitrogen addition in a temperate meadow[J]. Science of The Total Environment, 2021(762):143137 [13] JIANG F, ZHANG L, ZHOU J, et al. Arbuscular mycorrhizal fungi enhance mineralization of organic phosphorus (P) by carrying bacteria along their extraradical hyphae[J]. New Phytologist, 2020, 230(1):304-315 [14] ARTURSSON V, FINLAY R D, JANSSON J K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth[J]. Environmental Microbiology, 2006, 8(1):1-10 [15] WILSON G W T, RICE C W, RILLIG M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi:results from long-term field experiments[J]. Ecology Letters, 2009, 5(12):452-461 [16] QIN M, ZHANG Q, PAN J, et al. Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass[J]. European Journal of Soil Science, 2020, 71(1):84-92 [17] HEINEMEYER A, FITTER A. Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis:growth responses of the host plant and its AM fungal partner.[J]. Journal of Experimental Botany, 2004, 55(396):525-534 [18] ÖPIK M, METSIS M, DANIELL T J, et al. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest[J]. New Phytologist, 2009, 184(2):424-437 [19] ZHENG Y, CHEN L, LUO C, et al. Plant Identity Exerts Stronger Effect than Fertilization on Soil Arbuscular Mycorrhizal Fungi in a Sown Pasture[J]. Microbial Ecology, 2016, 72(3):647-658 [20] GABRIELE C, ERICA L, ENRICO E, et al. The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis[J]. Plos One, 2017, 12(2):e171866 [21] ALGUACIL M D M, TORRES M P, MONTESINOS-NAVARRO A, et al. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils[J]. Applied and Environmental Microbiology, 2016, 82(11):3348-3356 [22] NEUENKAMP L, MOORA M, ÖPIK M, et al. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities[J]. New Phytologist, 2018, 220(4):1236-1247 [23] YANG W, YONG Z, CHENG G, et al. The Arbuscular Mycorrhizal Fungal Community Response to Warming and Grazing Differs between Soil and Roots on the Qinghai-Tibetan Plateau[J]. Plos One, 2013, 8(9):e76447 [24] JIANG S, PAN J, SHI G, et al. Identification of root-colonizing AM fungal communities and their responses to short-term climate change and grazing on Tibetan plateau[J]. Symbiosis, 2017, 3(74):159-166 [25] SHI G, YAO B, LIU Y, et al. The phylogenetic structure of AMF communities shifts in response to gradient warming with and without winter grazing on the Qinghai-Tibet Plateau[J]. Applied Soil Ecology, 2017(121):31-40 [26] WEI X, SHI Y, QIN F, et al. Effects of experimental warming, precipitation increase and their interaction on AM fungal community in an alpine grassland of the Qinghai-Tibetan Plateau[J]. European Journal of Soil Biology, 2021(102):103272 [27] 林笠, 王其兵, 张振华, 等. 温暖化加剧青藏高原高寒草甸土非生长季冻融循环[J]. 北京大学学报(自然科学版), 2017, 53(1):171-178 [28] 李英年, 赵新全, 曹广民, 等. 海北高寒草甸生态系统定位站气候、植被生产力背景的分析[J]. 高原气象, 2004, 23(4):558-567 [29] WANG S, DUAN J, XU G, et al. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow[J]. Ecology, 2012, 93(11):2365-2376 [30] WANG Y, LIU H, Chung H, et al. Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer monsoon-dominated Tibetan alpine grassland[J]. Global Biogeochemical Cycles, 2014, 28(10):1081-1095 [31] Brundrett M C, Melville L, Peterson L. Practical methods in mycorrhiza research[M]. Canada:Myeologue Publications, 1994:35-38 [32] GAI J P, CAI X B, FENG G, et al. Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau[J]. Mycorrhiza, 2006, 16(3):151-157 [33] GAI J P, CHRISTIE P, CAI X B, et al. Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau[J]. Ecological Research, 2009, 24(6):1345-1350 [34] Wang J, Defrenne C, Mccormack M L, et al. Fine-root functional trait responses to experimental warming:a global meta-analysis[J]. New Phytologist, 2021, 230(5):1856-1867 [35] Birgander J, Rousk J, Olsson P A. Warmer winters increase the rhizosphere carbon flow to mycorrhizal fungi more than to other microorganisms in a temperate grassland[J]. Global Change Biology, 2017, 23(12):5372-5382 [36] HIIESALU I, PÄRTEL M, DAVISON J, et al. Species richness of arbuscular mycorrhizal fungi:associations with grassland plant richness and biomass[J]. New Phytologist, 2014, 203(1):233-244 [37] 马丽, 张骞, 张中华, 等. 梯度增温对高寒草甸物种多样性和生物量的影响[J]. 草地学报, 2020, 28(5):1395-1402 [38] JIANG S, LING N, MA Z, et al. Short-term warming increases root-associated fungal community dissimilarities among host plant species on the Qinghai-Tibetan Plateau[EB/OL]. https://doi.org/10.1007/s11104-021-05073-x, 2021-07-16/2021-08-19 [39] 王淼焱, 刁志凯, 刘润进. 巨孢囊霉科真菌已知种及其分布特点[J]. 菌物研究, 2004, 2(3):6-11 [40] 石国玺, 蒋胜竞, 罗佳佳, 等. 高寒草甸植物系统发育与AM真菌侵染的关系[J]. 生态学报, 2017, 37(11):3628-3635 [41] REINHART K O, WILSON G, RINELLA M J. Predicting plant responses to mycorrhizae:integrating evolutionary history and plant traits[J]. Ecology Letters, 2012, 15(7):689-695 [42] ESCUDERO V, MENDOZA R. Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient[J]. Mycorrhiza, 2005, 15(4):291-299 [43] HART M M, READER R J. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi[J]. New Phytologist, 2002, 153(2):335-344 [44] PIOTROWSKI J S, DENICH T, KLIRONOMOS J, et al. The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species[J]. New Phytologist, 2004, 164(2):365-373 |