Acta Agrestia Sinica ›› 2020, Vol. 28 ›› Issue (4): 895-903.DOI: 10.11733/j.issn.1007-0435.2020.04.005
Previous Articles Next Articles
DING Ting-ting, LI Ying-de, DUAN Ting-yu
Received:2020-03-13
Revised:2020-04-26
Online:2020-08-15
Published:2020-07-28
丁婷婷, 李应德, 段廷玉
通讯作者:
段廷玉
作者简介:丁婷婷(1997-),女,山东东明人,硕士研究生,主要从事植物病理学研究,E-mail:dingtt15@lzu.edu.cn
基金资助:CLC Number:
DING Ting-ting, LI Ying-de, DUAN Ting-yu. New Advances in Research on Interaction Between AM Fungi and Insects[J]. Acta Agrestia Sinica, 2020, 28(4): 895-903.
丁婷婷, 李应德, 段廷玉. AM真菌与昆虫互作研究新进展[J]. 草地学报, 2020, 28(4): 895-903.
| [1] 张传溪. 中国农业昆虫基因组学研究概况与展望[J]. 中国农业科学,2015,48(17):3454-3462 [2] 欧阳芳,王丽娜,闫卓,等. 中国农业生态系统昆虫授粉功能量与服务价值评估[J]. 生态学报,2019,39(01):131-145 [3] 张帆,李姝,肖达,等. 中国设施蔬菜害虫天敌昆虫应用研究进展[J]. 中国农业科学,2015,48(17):3463-3476 [4] 尚栋亮,于慧敏,张金良,等. 鲜食玉米种子包衣对地下害虫的防控以及苗期生长发育的影响[J]. 中国生物防治学报,2019,35(01):31-36 [5] 张帅,尹姣,曹雅忠,等. 药用植物地下害虫发生现状与无公害综合防治策略[J]. 植物保护,2016,42(03):22-29 [6] Harrison M J. Cellular programs for arbuscular mycorrhizal symbiosis[J]. Current Opinion in Plant Biology,2012,15(6):691-698 [7] 王倡宪,李晓林,秦岭,等. 利用丛枝菌根真菌提高植物抗病性研究进展[J]. 中国生物防治,2007,23:64-69 [8] 李芳,李彦忠,段廷玉. 禾草内生真菌与2种AM真菌互作对黑麦草生长的影响[J]. 草业学报,2017,26(09):132-140 [9] 孙秀秀,贺超兴,李衍素,等. AM真菌对黄瓜根围土壤微生物群落功能的影响[J]. 菌物学报,2017,36(07):892-903 [10] 郭艳娥,张峰,李芳,等. 放牧及AM真菌对垂穗披碱草生长和白粉病抗性的影响[J]. 草原与草坪,2018,38(02):41-48+55 [11] 王晓瑜,郭艳娥,冯希,等. AM真菌与禾草内生真菌对黑麦草抗旱性的影响[J]. 草业科学,2018,35(02):380-390 [12] Gilbert L,Johnson D W. Plant-plant communication through common mycorrhizal networks[J]. Advances in Botanical Research,2017,7:83-97 [13] Wang M G,Bezemer T M,Van Der Putten W H,et al. Effects of the timing of herbivory on plant defense induction and insect performance in ribwort plantain(Plantago lanceolata L.)depend on plant mycorrhizal status[J]. Journal of Chemical Ecology,2015,41(11):1006-1017 [14] Tomczak V V,Muller C. Influence of arbuscular mycorrhizal stage and plant age on the performance of a generalist aphid[J]. Journal of Insect Physiology,2017,98:258-266 [15] 秦明森. 丛枝菌根真菌对车轴草属植物生长影响的Meta分析[J]. 草业科学,2015,32(10):1576-1585 [16] 高春梅,王淼焱,弥岩,等. 丛枝菌根真菌与植食性昆虫的相互作用[J]. 生态学报,2014,34(13):3481-3489 [17] Sharma E,Anand G,Kapoor R. Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects[J]. Annals of Botany,2017,119(5):791-801 [18] Schweiger R,Muller C. Leaf metabolome in arbuscular mycorrhizal symbiosis[J]. Current Opinion in Plant Biology,2015,26:120-126 [19] Maurya A K,Kelly M P,Mahaney S M,et al. Arbuscular mycorrhizal symbiosis alters plant gene expression and aphid weight in a tripartite interaction[J]. Journal of Plant Interactions,2018,13(1):294-305 [20] Li Y,Nan Z,Duan T. Rhizophagus intraradices promotes alfalfa (Medicago sativa) defense against pea aphids (Acyrthosiphon pisum) revealed by RNA-Seq analysis[J]. Mycorrhiza,2019,29(6):623-635 [21] Stewart S A,Hodge S,Bennett M,et al. Aphid induction of phytohormones in Medicago truncatula is dependent upon time post-infestation,aphid density and the genotypes of both plant and insect[J]. Arthropod-Plant Interactions,2015,10(1):41-53 [22] 刘月华,钟梦莹,武瑞鑫,等. AM真菌介导垂穗披碱草抗虫作用研究[J]. 草地学报,2016,24(03):604-609 [23] Meier A R,Hunter M D. Mycorrhizae alter constitutive and herbivore-induced volatile emissions by milkweeds[J]. Journal of Chemical Ecology,2019,45(7):610-625 [24] Meier A R,Hunter M D. Mycorrhizae alter toxin sequestration and performance of two specialist herbivores[J]. Frontiers in Ecology and Evolution,2018,6:1-16 [25] Tao L,Ahmad A,De Roode J C,et al. Arbuscular mycorrhizal fungi affect plant tolerance and chemical defences to herbivory through different mechanisms[J]. Journal of Ecology,2016,104(2):561-571 [26] Lu J,Robert C a M,Riemann M,Cosme M,et al. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance[J]. Plant Physiology,167(3):1100-1116 [27] Formenti L,Rasmann S. Mycorrhizal fungi enhance resistance to herbivores in tomato plants with reduced jasmonic acid production[J]. Agronomy,2019,9(3):131 [28] Schoenherr A P,Rizzo E,Jackson N,et al. Mycorrhiza-induced resistance in potato involves priming of defense responses against cabbage looper (Noctuidae:Lepidoptera)[J]. Environmental Entomology,2019,48(2):370-381 [29] Chen Z,Zheng Z,Huang J,et al. Biosynthesis of salicylic acid in plants[J]. Plant Signal & Behavior,2009,4:493-496 [30] Tremmel M,Müller C. Insect personality depends on environmental conditions[J]. Behavioral Ecology,2012,5:386-392 [31] Smith,D.A. Toxicity of phytoalexins[M]. In Phytoalexins,J.A. Bailey and J.W. Mansfield,eds. New York:Halstead Press/John Wiley and Sons,1982:218-252 [32] Simon A L,Wellham P A,Aradottir G I,et al. Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae[J]. Scientific reports,2017,7:46497 [33] Kos M,Broekgaarden C,Kabouw P,et al. Relative importance of plant-mediated bottom-up and top-down forces on herbivore abundance on Brassica oleracea[J]. Functional Ecology,2011,25(5):1113-1124 [34] Meier A R,Hunter M D. Arbuscular mycorrhizal fungi mediate herbivore-induction of plant defenses differently above and belowground[J]. Oikos,2018,127(12):1759-1775 [35] Bennett A E,Millar N S,Emils G,et al. Plant and insect microbial symbionts alter the outcome of plant-herbivore-parasitoid interactions:implications for invaded,agricultural and natural systems[J]. Journal of Ecology,2016,104(6):1734-1744 [36] Gange A C,Smith A K. Arbuscular mycorrhizal fungi influence visitation rates of pollinating insects[J]. Ecological Entomology,2005,30(5):600-606 [37] Wolfe B E,Husband B C,Klironomos J N. Effects of a belowground mutualism on an aboveground mutualism[J]. Ecology Letters,2005,8(2):218-223 [38] Cahill J F,Elle E,Smith G R,Shore B H. Disruption of a belowground mutualism alters interactions between plants and their floral visitors[J]. Ecology,2008,89:1791-1801 [39] Barber,N. A.,Kiers,E. T.,Hazzard,R. V., et al. Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem[J]. Frontiers in Plant Science. 2013,4:338 [40] Heinen R,Biere A,Harvey J A,et al. Effects of soil organisms on aboveground plant-insect interactions in the field:patterns,mechanisms and the role of methodology[J]. Frontiers in Ecology & Evolution,2018,6:106 [41] Züst T,Agrawal A A. Mechanisms and evolution of plant resistance to aphids[J]. Nature Plants,2016,2(1):15206 [42] Malika R J,Alib J G,Beverc J D. Mycorrhizal composition influences plant anatomical defense and impacts herbivore growth and survival in a life-stage dependent manner. Pedobiologia-Journal of Soil Ecology,2018,66:29-35 [43] 张伟珍,段廷玉. AM真菌对箭筈豌豆响应豌豆蚜取食的影响[J]. 草地学报,2019,27(6):1518-1525 [44] Tomczak V V,Müller C. Plant species,mycorrhiza,and aphid age influence the performance and behaviour of a generalist[J]. Ecological Entomology,2018,43(1):37-46 [45] Tomczak V V,Schweiger R,Muller C. Effects of arbuscular mycorrhiza on plant chemistry and the development and behavior of a generalist herbivore[J]. Journal of Chemical Ecology,2016,42(12):1247-1258 [46] Prieto J D,Castañé C,Calvet C,et al. Tomato belowground–aboveground interactions:Rhizophagus irregularis affects foraging behavior and life history traits of the predator Macrolophus pygmaeus (Hemiptera:Miridae)[J]. Arthropod-Plant Interactions,2016,11(1):15-22 [47] Rasmussen P,Amin T,Bennett A,et al. Plant and insect genetic variation mediate the impact of arbuscular mycorrhizal fungi on a natural plant-herbivore interaction[J]. Ecological Entomology,2017,42(6):793-802 [48] Demirozer O,Ozkaya H O,Aldemir T,et al. Does the association of arbuscular mycorrhizal fungi and two-spotted spider mite increase gossypol synthesis in two cotton cultivars?[J]. Fresenius Environmental Bulletin,2015,24(11):4199-4204 [49] He L,Li C,Liu R. Indirect interactions between arbuscular mycorrhizal fungi and Spodoptera exigua alter photosynthesis and plant endogenous hormones[J]. Mycorrhiza,2017,27(6):525-535 [50] Minton M,Barber N,Gordon L. Effects of arbuscular mycorrhizal fungi on herbivory defense in two Solanum (Solanaceae) species[J]. Plant Ecology and Evolution,2016,149(2):157-164 [51] Green T,Ryan C A. Wound-induced proteinase inhibitor in plant leaves:a possible defense mechanism against insects[J]. Science,1972,175(4023):776-777 [52] Gange A,West H. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L.[J]. New Phytologist,1994,128(1):79-87 [53] Karley A J,Emslie-Smith M,Bennett A E. Potato aphid Macrosiphum euphorbiae performance is determined by aphid genotype and not mycorrhizal fungi or water availability[J]. Insect Science,2017,24(6):1015-1024 [54] Tremmel M,Müller C. Insect personality depends on environmental conditions[J]. Behavioral Ecology,2013,24:386-392 [55] Gilbert L,Johnson D. Plant-mediated ‘apparent effects’ between mycorrhiza and insect herbivores[J]. Current Opinion in Plant Biology,2015,26:100-105 [56] 何磊,邹慧芳,李长友,等. 丛枝菌根真菌和甜菜夜蛾的相互作用[J]. 植物保护学报,2017,44(03):460-466 [57] Bennett A E,Alers-Garcia J,Bever J D. Three-way interactions among mutualistic mycorrhizal fungi,plants,and plant enemies:Hypotheses and synthesis[J]. American Naturalist,2006,167(2):141-152 [58] 吴孔明. 中国农作物病虫害防控科技的发展方向[J]. 农学学报,2018,8(01):35-38 [59] 李洋,严俊鑫,陈晓玲. AM真菌对植物虫害防治作用研究进展[J]. 农业生物技术学报,2019,27(09):1692-1702 [60] Prochaska T J,Donze-Reiner T,Marchi-Werle L,et al. Transcriptional responses of tolerant and susceptible soybeans to soybean aphid (Aphis glycines Matsumura) herbivory[J]. Arthropod-Plant Interactions,2015,9(4):347-359 [61] Wang H,Cui K,Shao S,et al. Molecular response of gall induction by aphid Schlechtendalia chinensis (Bell) attack on Rhus chinensis Mill[J]. Journal of Plant Interactions,2017,12(1):465-479 [62] Xia X,Shao Y,Jiang J,et al. Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium) [J]. BMC genomics,2014,15(1):1050 [63] Kaling M,Schmidt A,Moritz F,et al. Mycorrhiza-triggered transcriptomic and metabolomic networks impinge on herbivore fitness[J]. Plant Physiology,2018,176(4):2639-2656 [64] Johnson S N,Rasmann S. Root-feeding insects and their interactions with Organisms in the rhizosphere[J]. Annual Review of Entomology,2015,60:517-535 [65] Murrell E G,Hanson C R,Cullen E M. European corn borer oviposition response to soil fertilization practices and arbuscular mycorrhizal colonization of corn[J]. Ecosphere,2015,6(6):1-12 |
| [1] | YU Ya-nan, GE Nan, WANG Bo, LI Yu-wei, LYU Nan, WANG Chuan-qi, LI Xin. Ecological Stoichiometric Changes and Responses to Environment of Plant Root-Soil System in Desert Grassland Region of Central and Western Inner Mongolia [J]. Acta Agrestia Sinica, 2025, 33(9): 2921-2930. |
| [2] | JU Xin, WANG Xin-ya, WANG Bing-ying, HAN Guo-dong, WU Qian. Effects of Grazing Intensity on Plant Community Composition and Nutrient Quality of Forage in a Desert Steppe [J]. Acta Agrestia Sinica, 2025, 33(9): 2962-2972. |
| [3] | DOU Quan-hui, CHEN Cheng-hao, ZENGTAI Yi-hei, LONGZHU Duo-jie, MIAO Qi, SUN Fang-hui, CAIRANG La-mao, CHEN Xi, SUONAN Ji. Evaluation of Habitat Suitability of Important Medicinal Plants Gentianaceae in the Qinghai-Tibet Plateau Based on the Optimized Maximum Entropy Model [J]. Acta Agrestia Sinica, 2025, 33(9): 3024-3033. |
| [4] | WANG Wei, Qi Ming-ga, WANG Zhi-jun, ZHAO Mu-qier, GE Gen-tu. Effects of Different Additives and Mixing Ratios on the Quality of Mixed Silage of Whole-Plant Corn with Forage Triticale [J]. Acta Agrestia Sinica, 2025, 33(9): 3077-3087. |
| [5] | YU Guo-jie, WANG Qing, HAN Rui-xin, LIANG Hong, PING Xiao-yan. Dynamic Effect of Mowing Intensity on the Allocation of Photosynthetic Products in Cynodon dactylon [J]. Acta Agrestia Sinica, 2025, 33(8): 2521-2530. |
| [6] | DUAN Jun-guang, FANG Kai, PEI Lu, CHU Jian-min, ZHANG Jin-xin, LI Xiao-xia, WANG Ying-xin. Changes of Trade-offs Between Aboveground and Belowground Plant Biomass Across Different Grazing Intensities of Alpine Meadow [J]. Acta Agrestia Sinica, 2025, 33(8): 2575-2584. |
| [7] | DING Cheng-xiang, LI Xing-fu, SU De-rong, LIU Yu. Meta-Analysis of the Impacts of Solar Parks/ Photovoltaic Power Plants on Regional Microclimate, Vegetation and Soil Properties [J]. Acta Agrestia Sinica, 2025, 33(8): 2641-2651. |
| [8] | CHEN Hao, GAO Wan-shun, WANG Xu-zhe, MA Chun-hui. Nutrients and Fermentation Quality of Different Varieties of Sesbania cannabina and Zea mays [J]. Acta Agrestia Sinica, 2025, 33(8): 2713-2720. |
| [9] | YAN Xu, HOU Xing-feng, WANG Hong-lin, ZUO Yan-chun, XIAO Lian, WU Zi-zhou, LI Yang, CHEN Hui, LIU Hong-mei, SUN Ru-ting, YANG Jian, ZHOU Hong-yan, LIU Jing-song, ZHANG Qiong-wen, DU Zhou-he. Quality Analysis of Silage in Agricultural Region of Sichuan Province [J]. Acta Agrestia Sinica, 2025, 33(7): 2051-2058. |
| [10] | ZHONG Hua, HAO Jie, LIANG Wen-jun, Gao Yang-yang, LI Lang, WANG Ya-nan, WANG Chang-hui, DONG Kuan-hu. Effects of Various Nitrogen Forms Addition on Grassland Biomass in the Agro-Pastoral Ecotone in Northern Shanxi [J]. Acta Agrestia Sinica, 2025, 33(7): 2198-2205. |
| [11] | LONGZHU Duojie, ZHANG Xu-ping, LIU Qiang, WANG Jin, HU Xiao-mei, LA Ben. Relationships Between Plant Diversity and Ecosystem Multifunctionality Along a Water-Salt Gradient in the Gahai Wetland [J]. Acta Agrestia Sinica, 2025, 33(7): 2262-2276. |
| [12] | LEI Sheng-yan, ZHANG Ying, SU Bei-bei, DAO Ri-na, MA Lin-xiong, TIE Xiao-long, LIU Wen-hui. Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Three Cultivated Forages in Alpine Area [J]. Acta Agrestia Sinica, 2025, 33(7): 2388-2399. |
| [13] | ZHANG Li, YANG Xin-guo, WANG Lei, ZHANG Xue, QU Wen-jie, LIU Rong-guo, ZHANG Bo. Spatial Associations Analysis of Species in Sand-Fixing Community of Caragana korshinskii Based on Point Pattern [J]. Acta Agrestia Sinica, 2025, 33(6): 1886-1893. |
| [14] | LUO Lai-kai, YIN Ming-yue, ZHU Ling, CHENG Ying, YANG Yan-fang, TAN Kai, ZHAO Kai. Herbaceous Plant Diversity and Environmental Interpretation in Different Habitats: A Case Study of The Anqing Section of The Yangtze River [J]. Acta Agrestia Sinica, 2025, 33(6): 1934-1946. |
| [15] | CHEN Yan-long, QI Shuai, XU Rui-xuan, ZHANG Bei, WANG Shu-ping, DONG Jia-li, CAO Wen-xia. Effects of Planting Row Number And Density of Corn-Alfalfa Intercropping System on Maize Performance in Hexi Corridor [J]. Acta Agrestia Sinica, 2025, 33(6): 2013-2022. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||