Acta Agrestia Sinica ›› 2023, Vol. 31 ›› Issue (4): 929-942.DOI: 10.11733/j.issn.1007-0435.2023.04.001
CHEN Zhe1,5, JIN Yan-xia1, SUN Jian3, SHAO Xin-qing4, WANG Ying-dian1,5, ZHAO Xin-quan2, WANG Wen-ying1,5, XIE Hui-chun1, ZHANG Zhen-hua2, ZHANG Li1, DU Yan-gong2, ZHOU Hua-kun2
Received:
2022-06-17
Revised:
2022-12-04
Published:
2023-04-28
陈哲1,5, 金艳霞1, 孙建3, 邵新庆4, 王英典1,5, 赵新全2, 王文颖1,5, 谢惠春1, 张振华2, 张莉1, 杜岩功2, 周华坤2
通讯作者:
杜岩功,E-mail:ygdu@nwipb.cas.cn;周华坤,E-mail:hkzhou@nwipb.cas.cn
作者简介:
陈哲(1986-),男,汉族,陕西眉县人,博士,副教授,主要从事高寒草地生态系统生态学研究,E-mail:chenzhe@qhnu.edu.cn
基金资助:
CLC Number:
CHEN Zhe, JIN Yan-xia, SUN Jian, SHAO Xin-qing, WANG Ying-dian, ZHAO Xin-quan, WANG Wen-ying, XIE Hui-chun, ZHANG Zhen-hua, ZHANG Li, DU Yan-gong, ZHOU Hua-kun. A Review on the Impact of Global Warming to Greenhouse Gas Flux in Frozen Ground Region[J]. Acta Agrestia Sinica, 2023, 31(4): 929-942.
陈哲, 金艳霞, 孙建, 邵新庆, 王英典, 赵新全, 王文颖, 谢惠春, 张振华, 张莉, 杜岩功, 周华坤. 全球变暖对高寒冻土区温室气体通量影响研究进展[J]. 草地学报, 2023, 31(4): 929-942.
[1] 赵林,盛煜.青藏高原多年冻土及变化[M]. 北京:科学出版社,2019:1-9 [2] OBU J,WESTERMANN S,BARTSCH A,et al. Northern Hemisphere Permafrost Map Based on TTOP Modelling for 2000-2016 at 1 km2 Scale[J]. Earth-Science Reviews,2019,193:299-316 [3] ZOU D F,ZHAO L,SHENG Y,et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere,2017,11(6):2527-2542 [4] SCHUUR E,MCGUIRE A D,SCHADEL C,et al. Climate change and the permafrost carbon feedback[J]. Nature,2015,520(7546):171-179 [5] DING J Z,LI F,YANG G B,et al. The Permafrost Carbon Inventory on the Tibetan Plateau:a New Evaluation Using Deep Sediment Cores[J]. Global Change Biology,2016,22(8):2688-2701 [6] 王蓝翔,董慧科,龚平,等. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土,2021,43(5):1365-1382 [7] BROWN J,FERRIANS O,HEGINBOTTOM J A,et al. Circum-Arctic Map of Permafrost and Ground-Ice Conditions,Version 2[EB/OL]. https://nsidc.org/data/ggd318/versions/2,2022-06-17 [8] KATEY,WALTER,ANTHONY,et al. 21 st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes[J]. Nature Communications,2018,9(1):3262 [9] WANG T,YANG D,YANG Y,et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau[J]. Science Advances,2020,6(19):eaaz3513 [10] FRIEDLINGSTEIN P COX P,BETTS R,et al. Climate-Carbon Cycle Feedback Analysis:Results from the C4MIP Model Intercomparison[J]. Journal of Climate,2006,19(14):3337-3353 [11] QIAN H,JOSEPH R,ZENG N. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections[J]. Global Change Biology,2010,16(2):641-656 [12] SCHAEFER K,ZHANG T,BRUHWILER L,et al. Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus,2011,63(2):165-180 [13] KOVEN C D,LAWRENCE D M,RILEY W J. Permafrost carbon climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(12):3752-3757 [14] MCGUIRE A D,LAWRENCE D M,KOVEN C,et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change[J]. Proceedings of the National Academy of Sciences of the United States of America,20181,15(15):3882-3887 [15] SCHUUR E,ABBOTT B W,BOWDEN W B,et al. Expert assessment of vulnerability of permafrost carbon to climate change[J]. Climatic Change,2013,119(2):359-374 [16] SCHUUR E,ABBOTT B. High risk of permafrost thaw:Northern soils will release huge amounts of carbon in a warmer world [J]. Nature,2011,480(7375):32-33 [17] HARDEN J W,KOVEN C D,PING C L,et al. Field information links permafrost carbon to physical vulnerabilities of thawing[J]. Geophysical Research Letters,2012,39(15):L15704 [18] GROGAN P,MICHELSEN A,AMBUSP,et al. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms[J].Soil Biology and Biochemistry,2004,36(4):641-654 [19] 孙辉,秦纪洪,吴杨. 土壤冻融交替生态效应研究进展[J]. 土壤,2008,40(4):505-509 [20] CHAI Y J,ZENG X B,E S Z,et al. Effects of freeze-thaw on aggregate stability and the organic carbon and nitrogen enrichment ratios in aggregate fractions[J]. Soil Use Management,2014,30:507-516 [21] KREYLING J,PERSOH D,WERNER S,et al. Short-term impacts of soil freeze-thaw cycles on roots and root-associated fungi of holcus lanatus and calluna vulgaris[J]. Plant Soil,2012,353:19-31 [22] PEREZ-MON C,FROSSARD A,FREY B. Functional and structural responses of arctic and alpine soil prokaryotic and fungal communities under freeze-thaw cycles of different frequencies[J]. Frontiers in Microbiology,2020,11:982 [23] WU M H,CHEN S Y,CHEN J W,et al. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(25):e2025321118 [24] 陈哲,杨世琦,张晴雯,等. 冻融作用对土壤氮素损失及有效性的影响[J]. 生态学报,2016,36(4):1083-1094 [25] 胡仲豪,常顺利,张毓涛,等. 天山林区不同类型群落土壤氮素对冻融过程的动态响应[J]. 生态学报,2019,39(2):571-579 [26] PU J H,JIANG N,JUAN Y H,et al. Effects of freeze-thaw on dissolved nitrogen pool,nitrogen transformation processes and diversity of bacterial community in temperate soils[J]. The journal of applied ecology,2020,31(9):2893-2902 [27] JIANG N,JUANY,TIAN L,et al. Soil water contents control the responses of dissolved nitrogen pools and bacterial communities to freeze-thaw in temperate soils[J]. BioMed Research International,2020:6867081 [28] MAO C,KOU D,CHEN L Y,et al. Permafrost nitrogen status and its determinants on the Tibetan Plateau[J]. Global Change Biology,2020,26(9):5290-5302 [29] CHEN L,LIU L,QIN S,et al. Regulation of priming effect by soil organic matter stability over a broad geographic scale[J]. Nature Communications,2019,10:5112 [30] RISK N,SNIDER D,WAGNER-RIDDLE C. Mechanisms leading to enhanced soil nitrous oxide fluxes induced by freeze-thaw cycles[J]. Canadian Journal of Soil Science,2013,93:401-414 [31] BISKABORN B K,SMITH S L,NOETZLI J,et al. Permafrost is warming at a global scale[J]. Nature Communications,2019,10(1):264 [32] SMITH S L,O'NEILL H B,ISAKSEN K,et al. The changing thermal state of permafrost[J]. Nature Reviews Earth & Environment,2022,3(1):10-23 [33] STRANEO F,SUTHERLANG D A,HOLLAND D,et al. Characteristics of ocean waters reaching Greenland’s glaciers[J]. Annals of Glaciology,2012,53(60):202-210 [34] MUDRYK L R,KUSHNER P J,DERKSEN C,et al. Snow cover response to temperature in observational and climate model ensembles[J]. Geophysical Research Letters,2017,44(2):919-926 [35] BISKABORN B K,LANCKMAN J P,LANTUIT H,et al. The new database of the Global Terrestrial Network for Permafrost (GTN-P)[J]. Earth System Science Data,2015,7(2):245-259 [36] 蔡红艳,韩冬锐,杨林生,等. 泛北极地区多年冻土活动层厚度演变[J]. 遥感学报,2020,24(8):1045-1057 [37] AALTO J,KARJALAINEN O,HJORT J et al. Statistical forecasting of current and future circum-Arctic ground temperatures and active layer thickness[J]. Geophysical Research Letters,2018,45(10):4889-4898 [38] KUANG X X,JIU J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research Atmospheres,2016,121(8):3979-4007 [39] 秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展,2014,33(7):874-883 [40] GUO D,WANG H. Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J]. Chinese Science Bulletin,2014,59(20):2439-2448 [41] DING J Z,CHEN L Y,JI C J,et al. Decadal soil carbon accumulation across Tibetan permafrost regions[J]. Nature Geoscience,2017,10:420-424 [42] 林笠,王其兵,张振华,等. 温暖化加剧青藏高原高寒草甸土非生长季冻融循环[J]. 北京大学学报:自然科学版,2017,53(1):171-178 [43] LIU F T,KOU D,CHEN Y L,et al. Altered microbial structure and function after thermokarst formation[J]. Global Change Biology,2021,27:823-835 [44] PENG X,ZHANG T,FRAUENFELD O,et al. Spatiotemporal Changes in Active Layer Thickness under Contemporary and Projected Climate in the Northern Hemisphere[J]. Journal of climate,2018,31(7):251-266 [45] WAN G N,YANG M X,LIU Z C,et al. The precipitation variations in the Qinghai-Xizang (Tibetan) Plateau during 1961-2015[J]. Atmosphere,2017,8:80 [46] LI W B,Wu J B,BAI E,et al. Response of terrestrial nitrogen dynamics to snow cover change:A meta-analysis of experimental manipulation[J]. Soil Biology & Biochemistry,2016,100:51-58 [47] 冉洪伍,范继辉,黄菁. 藏北高寒草地土壤冻融过程水热变化特征[J]. 草业科学,2019,36(4):980-990 [48] 马俊杰,李韧,刘宏超,等. 青藏高原多年冻土区活动层水热特性研究进展[J]. 冰川冻土,2020,42(1):195-204 [49] LIBBY M D,VANDERZAAG A C,GREGORICH E G,et al. An improved laboratory method shows that freezing intensity increases N2O emissions[J]. Canadian Journal of Soil Science,2020,100(2):136-149 [50] HUGELIUS G,BOCKHEIM J G,CAMILL P,et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region[J]. Earth System Science Data,2013,5(2),393-402 [51] HUGELIUS G,STRAUSS J,ZUBRZYCKI S,et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps[J]. Biogeosciences,2014,11(23):6573-6593 [52] 王根绪,程国栋,沈永平. 青藏高原草地土壤有机碳库及其全球意义[J]. 冰川冻土,2002(6):693-700 [53] LOISEL J,YU Z,BEILMAN D W,et al. A Database and synthesis of northern peatland soil properties and holocene carbon and nitrogen accumulation[J]. The Holocene,2014,24(9):1028-1042 [54] KOU D,DING J,LI F,et al. Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region[J]. Science of the Total Environment,2019,650:1795-1804 [55] 张亚亚,郭颖,刘海红,等. 青藏高原表土有机碳、全氮含量分布及其影响因素[J]. 生态环境学报,2018,27(5):866-872 [56] WANG Y,SONG C,YU L,et al. Convergence in temperature sensitivity of soil respiration:Evidence from the Tibetan alpine grasslands[J]. Soil Biology and Biochemistry,2018,122:50-59 [57] DAVIDSON E A,JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,2006,440(7081):165-173 [58] WANG Y,LIU H,CHUNG H,et al. Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer monsoon-dominated Tibetan alpine grassland[J]. Global Biogeochemical Cycles, 2014,28(10):9-20 [59] SCHÄDEL C,BADER K F,SCHUUR E,et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils[J]. Nature Climate Change,2016,6(10):950-953 [60] LI J Q,YAN D,PENDALL E,et al. Depth dependence of soil carbon temperature sensitivity across Tibetan permafrost regions[J]. Soil Biology and Biochemistry,2018,126:82-90 [61] SCHÄDEL C,SCHUUR E,BRACHO R,et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data[J]. Global Change Biology,2014,20(2):641-652 [62] CHEN L,LIANG J,QIN S,et al. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau[J]. Nature Communications,2016,7:13046 [63] CHEN Y,HAN M,YUAN X,et al. Warming has a minor effect on surface soil organic carbon in alpine meadow ecosystems on the Qinghai-Tibetan Plateau[J]. Global Change Biology,2022,28(10):1618-1629 [64] SCHUUR E,VOGEL J G,CRUMMER K G,et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature,2009,459(7246):556-559 [65] STEVEN B,POLLARD W H,GREER C W,et al. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic[J]. Environmental Microbiology,2010,10(12):3388-3403 [66] HENRY H A L. Climate change and soil freezing dynamics:historical trends and projected changes[J]. Climatic Change,2008,87:421-434 [67] NATALI S M,WATTS J D,ROGERS B M,et al. Large loss of CO2 in winter observed across the northern permafrost region[J]. Nature Climate Change,2019,9(12):852-857 [68] 王广帅,杨晓霞,任飞,等. 青藏高原高寒草甸非生长季温室气体排放特征及其年度贡献[J]. 生态学杂志,2013,32(8):1994-2001 [69] STIEGLITZ M,DÉRY S J,ROMANOVSKY V E,et al. The role of snow cover in the warming of arctic permafrost[J]. Geophysical Research Letters,2003,30(13):54-51 [70] GROFFMAN P M,DRISCOLL C T,FAHEY T J,et al. Colder soils in a warmer world:A snow manipulation study in a northern hardwood forest ecosystem[J]. Biogeochemistry,2001,56(2):135-150 [71] WANG Q,LV W,LI B,et al. Annual ecosystem respiration is resistant to changes in freeze-thaw periods in semi-arid permafrost[J]. Global Change Biology,2020,26(4):2630-2641 [72] OLEFELDT D,GOSWAMI S,GROSSE G,et al. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature Communications,2016,7,13043 [73] DAI L C,GUO X W,ZHANG F W,et al. Seasonal dynamics and controls of deep soil water infiltration in the seasonally-frozen region of the Qinghai-Tibet plateau[J]. Journal of Hydrology,2019,571:740-748 [74] 张贤,朱求安,杨斌,等. 基于过程模型的青藏高原湿地甲烷排放格局评估[J]. 生态学报,2020,40(9):3060-3071 [75] IPCC:MASSON-DELMOTTE V,ZHAI P,PIRANI A,et al. Climate Change:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge:Cambridge University Press,2021:1 [76] TREAT C C,NATALI S M,ERNAKOVICH J,et al. A pan-Arctic synthesis of CH4and CO2 production from anoxic soil incubations[J]. Global Change Biology,2015,21(7):2787-2803 [77] OLEFELDT D,TURETSKY M R,CRILL P M,et al. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones[J]. Global Change Biology,2013,19(2):589-603 [78] PAUDEL R,MAHOWALD N M,HESS P G M,et al. Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC[J]. Environmental Research Letters,2016,11(3):034020 [79] KAPLAN,JED O. Wetlands at the Last Glacial Maximum:Distribution and methane emissions[J]. Geophysical Research Letters,2002,29(6):1079 [80] LI F,Yang G B,Peng Y F,et al. Warming Effects on Methane Fluxes Differ Between Two Alpine Grasslands with Contrasting Soil Water Status[J]. Agricultural and forest meteorology,2020,290:107988 [81] ZHANG Z H,WANG G S,WANG H,et al. Warming and drought increase but wetness reduces the net sink of CH4 in alpine meadow on the Tibetan Plateau[J]. Applied Soil Ecology,2021,167:104061 [82] SONG W,WANG H,WANG G,et al. Methane emissions from an alpine wetland on the Tibetan Plateau:Neglected but vital contribution of the nongrowing season[J]. Journal of Geophysical Research Biogeosciences,2015,120(8):1475-1490 [83] SONG C,WANG Y,WANG Y,et al. Emission of CO2,CH4 and N2O from freshwater marsh during freeze-thaw period in Northeast of China[J]. Atmospheric Environment,2006,40(35):6879-6885 [84] 陈哲,韩瑞芸,杨世琦,等. 东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究[J]. 农业环境科学学报,2016,35(2):387-395 [85] JEAN L M,PIERRE R. Production,oxidation,emission and consumption of methane by soils:A Review[J]. European journal of soil biology,2001,37(1):25-50 [86] DÖRSCH P,PALOJARVI A,MOMMERTZ S. Overwinter greenhouse gas fluxes in two contrasting agricultural habitats[J]. Nutrient Cycling in Agroecosystems,2004,70(2):117-133 [87] LI F,PENG Y,NATALI S M,et al. Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients[J]. Ecology,2017,98(11):2851-2859 [88] ZHANG X Z,YANG Y P,PIAO S L,et al. Ecological change on the Tibetan Plateau[J]. Chinese Science Bulletin,2015,60,(32):3048-3056 [89] WEI D,QI Y,MA Y,et al. Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(33):2015283118 [90] LIU H Y,MI Z R,LIN L,et al. Shifting plant species composition in response to climate change stabilizes grassland primary production[J]. Proceedings of the National Academy of Science of the United States of America,2018,115(16):4051-4056 [91] PEDERSEN E P,ELBERLING B,MICHELSEN A. Foraging deeply:Depth-specific plant nitrogen uptake in response to climate-induced N-release and permafrost thaw in the High Arctic[J]. Global Change Biology,2020,26(11):6523-6536 [92] PU Y,WANG D,LI M,et al. Effects of alpine marsh degradation on soil phytoliths and phytolith-occluded carbon on the Zoige Plateau,China[J]. Journal of Soils and Sediments,2021,21:1730-1742 [93] GAO W,SUN W,XU X. Permafrost response to temperature rise in carbon and nutrient cycling:Effects from habitat-specific conditions and factors of warming[J]. Ecology and Evolution,2021,11(22):16021-16033 [94] GAO W,YAN D. Warming suppresses microbial biomass but enhances N recycling[J]. Soil Biology and Biochemistry,2019,131:111-118 [95] CRAINE J M,ELMORE A J,WANG L,et al. Isotopic evidence for oligotrophication of terrestrial ecosystems[J]. Nature Ecology & Evolution,2018,2(11):1735-1744 [96] WANG J,WU Q,YUAN Z,et al. Soil respiration of alpine meadow is controlled by freeze-thaw processes of active layer in the permafrost region of the Qinghai-Tibet Plateau[J]. The Cryosphere,2020,14(9):2835-2848 [97] VOIGT C,MARUSHCHAK M E,ABBOT B W,et al. Nitrous oxide emissions from permafrost-affected soils[J]. Nature Reviews Earth & Environment,2020,1:420-434 [98] MARUSHCHAK M E,KERTTULA J,DIÁKOVÁ,et al. Thawing Yedoma permafrost is a neglected nitrous oxide source[J]. Nature Communications,2021,12(1):7107 [99] ZHANG L W,ZHANG S,XIA X H,et al. Unexpectedly Minor Nitrous Oxide Emissions from Fluvial Networks Draining Permafrost Catchments of the East Qinghai-Tibet Plateau[J]. Nature Communications,2022,13(1):950-950 [100] WU H H,XU X K,CHENG W G,et al. Dissolved organic matter and inorganic N jointly regulate greenhouse gases fluxes from forest soils with different moistures during a freeze-thaw period[J]. Soil Science and Plant Nutrition,2020,66:163-176 [101] WOLF B,KIESE R,CHEN W,et al. Modeling N2O emissions from steppe in Inner Mongolia,China,with consideration of spring thaw and grazing intensity[J]. Plant & Soil,2012,350(1-2):297-310 [102] CHEN Z,YANG S Q,ZHANG A P,et al. Nitrous oxide emissions following seasonal freeze-thaw events from arable soils in northeast China[J]. Journal of Integrative Agriculture,2018,17(1):231-246 [103] 周旺明,秦胜金,刘景双,等. 沼泽湿地土壤氮矿化对温度变化及冻融的响应[J]. 农业环境科学学报,2011,30(4):806-811 [104] TEEPE R,BERNARD L. Variability of CO2 and N2O Emissions During Freeze-Thaw Cycles:Results of Model Experiments on Undisturbed Forest-Soil Cores[J]. Journal of plant nutrition and soil science,2004,167(2):153-159 [105] SORENSEN P O,FINZI AC,MARC-ANDRE G,et al. Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming[J]. Soil Biology and Biochemistry,2018,116:39-47 [106] CHEN Z,GE S D,ZHANG Z H,et al. Soil moisture but not warming dominates nitrous oxide emissions during freeze-thaw cycles in a Qinghai-Tibetan Plateau alpine meadow with discontinuous permafrost[J]. Frontiers in Ecology and Evolution,2021,9:676027 [107] 徐欢,王芳芳,李婷,等. 冻融交替对土壤氮素循环关键过程的影响与机制研究进展[J]. 生态学报,2020,40(10):3168-3182 [108] MAO C,KOU D,WANG G,et al. Trajectory of topsoil nitrogen transformations along a thermo erosion gully on the Tibetan Plateau[J]. Journal of Geophysical Research Biogeosciences,2019,124(5):1342-1354 [109] BRUIJN A M G D,BUTTERBACH-BAHL K,BLAGODATSKY S,et al. Model evaluation of different mechanisms driving freeze-thaw N2O emissions[J]. Agriculture Ecosystems & Environment,2009,133(3-4):196-207 [110] LUDWIG B,W0LF I,TEEPE R. Contribution of nitrification and denitrification to the emission of N2O in a freeze-thaw event in an agricultural soil[J]. Journal of Plant Nutrition and Soil Science,2004,167(6):678-684 [111] ÖQUIST M G,NILSSON M,S RENSSON F,et al. Nitrous oxide production in a forest soil at low temperatures-processes and environmental controls[J].FEMS Microbiology Ecology,2004,49(3):371-378 [112] YANAI Y,TOYOTA K,OKAZAKI M. Response of denitrifying communities to successive soil freeze-thaw cycles[J]. Biology and Fertility of Soils,2007,44(1):113-119 [113] CHERKAUER K A,BOWLING L C,NAZ B. Treatise on Geomorphology[M]. New York:Academic Press,2013:151-172 [114] 蔡延江,丁维新,项剑. 农田土壤N2O和NO排放的影响因素及其作用机制[J]. 土壤,2012,44(6):881-887 [115] YANG G,PENG Y,MARUSHCHAK M E,et al. Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw[J]. Environmental Science & Technology,2018,52(16):9162-9169 [116] SANDERS-DEMOTT R,SORENSEN P O,REINMANN A B,et al. Growing season warming and winter freeze-thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem[J]. Biogeochemistry,2018,137(3):337-349 [117] KOU D,YANG G,LI F,et al. Progressive nitrogen limitation across the Tibetan alpine permafrost region[J]. Nature Communications,2020,11:3331 [118] KLEIN J A,HARTE J,ZHAO X Q,et al. Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau[J]. Ecosystems,2007,11(5):775-789 [119] LV W,LUO C,ZHANG L,et al. Net neutral carbon responses to warming and grazing in alpine grassland ecosystems[J]. Agricultural and Forest Meteorology,2020,280:107792 [120] 陈哲,徐巍,门双,等. 祁连山岛状冻土活动层土壤氮库对模拟冻融响应[J]. 草地学报,2023,31(1):19-28 [121] 方精云. 碳中和的生态学透视[J]. 植物生态学报,2021,45(11):1173-1176 [122] 王云英,裴薇薇,郭小伟,等. 青藏高原高寒湿地生态系统碳水通量与水分利用效率研究[J].草地学报,2022,30(5):1037-1042 [123] 刘长雨,谢保鹏,杨洁,等. 青藏高原不同退化梯度下植被蒸散发的时空格局研究[J]. 草地学报,2023,31(1):252-262 |
[1] | CHEN Zhe, XU Wei, MEN Shuang, ZHANG Zhen-hua, ZHANG Zhong-hua, WANG Ying-dian, ZHAO Xin-quan, WANG Wen-ying, SUN Jian, SHAO Xin-qing, DU Yan-gong, ZHOU Hua-kun. Response of Soil Nitrogen Pools to A Simulated Freeze-Thaw Test in the Active Layer of Segregated Permafrost on the Qilian Mountains [J]. Acta Agrestia Sinica, 2023, 31(1): 19-28. |
[2] | LIU Chang-yu, XIE Bao-peng, YANG Jie, CHEN Ying, PEI Ting-ting. Spatial and Temporal Patterns of Vegetation Evapotranspiration under Different Degradation Gradients in the Qinghai-Tibet Plateau [J]. Acta Agrestia Sinica, 2023, 31(1): 252-262. |
[3] | FEI Xuan, SUO Cai-xu, XIANG Shuang, SUN Shu-cun. Responses of Plant Community Structure and Functional Group Characteristics to Long-term Seasonal Grazing in an Alpine Meadow on Eastern Qinghai-Tibet Plateau [J]. Acta Agrestia Sinica, 2022, 30(8): 1954-1963. |
[4] | MA Kai-kai, XU Chang-lin, LI Ying, WEI Kong-tao, BAI Mei-mei, LIU Yuan-yuan, YU Xiao-jun. Effects of Different Rest Grazing Periods on Soil Seed Bank in Cold Season Pasture of Alpine Meadow [J]. Acta Agrestia Sinica, 2022, 30(8): 2100-2107. |
[5] | JI Zhen-xia, PEI Ting-ting, CHEN Ying, HOU Qing-qing, XIE Bao-peng, WU Hua-wu. Spatial-Temporal Variation and Driving Factors of Grassland NDVI in the Qinghai-Tibet Plateau from 2001 to 2020 [J]. Acta Agrestia Sinica, 2022, 30(7): 1873-1881. |
[6] | LIU Xiao-long, HU Jian, ZHOU Qing-ping, CAO Quan-heng, SUN Mei-ling, CHEN Xue-ling, YANG Li-xue. Effects of Typical Shrub-encroached Grassland on Vegetation Characteristics and Soil Nutrients in the Zoige Plateau [J]. Acta Agrestia Sinica, 2022, 30(4): 901-908. |
[7] | ZHOU Ze, YAO Tuo, SHI Tan-mei, FU Wei-gang, HE Shan-mu, YANG Xiao-lei, GAO Li-zhen, LI Jian-hong. Effects of Microbial Agents on Soil Microbial Community Structure and Nitrogen-Fixing Bacteria in Alpine Farming Area [J]. Acta Agrestia Sinica, 2022, 30(10): 2609-2616. |
[8] | ZHANG Hao-rui, FU Gang. Responses of Phylogenetic Diversity of Soil Fungal Community to Grazing in Alpine Grasslands of the Northern Tibet [J]. Acta Agrestia Sinica, 2022, 30(1): 21-28. |
[9] | YAO Xi-xi, WANG Li-ya, YAN Zhen-ying, LI Quan-lin, WANG You-bin, MA Bing-yun, LEI Yan-min, ZHOU Rui, XIE Jiu-xiang. Characteristics of Forage Nutritional Quality and Digestibility in Different Types of Grassland in Qinghai Tibet Plateau and their Correlation [J]. Acta Agrestia Sinica, 2021, 29(S1): 113-120. |
[10] | WANG Tan-guo-yan, MA Zhi-yuan, LI Pei-yang, GUO Jun-hong, ZHANG Jia-yi, JIANG Sheng-jing. Effects of Short-Term Warming on Arbuscular Mycorrhizal Fungi in the Rhizosphere of Different Plant Species in Alpine Meadows on the Qinghai-Tibetan Plateau [J]. Acta Agrestia Sinica, 2021, 29(9): 1959-1966. |
[11] | WEI Xing-xing , WU Jiang-qi , LI Guang, WANG Hai-yan,LIU Shuai-nan, ZHANG Shi-kang, ZHANG Juan. Response of Soil Nitrogen Components to Nitrogen Addition in Wet Meadow in the Tibetan Plateau [J]. Acta Agrestia Sinica, 2021, 29(4): 677-683. |
[12] | GUO Yan-hong, PU Xiao-jian, PU Xiao-peng, DU Wen-hua. Change Tendency of the Aboveground Biomass and Nutrition Quality in the Alpine Pastoral Area of Qinghai Tibet [J]. Acta Agrestia Sinica, 2021, 29(4): 734-742. |
[13] | ZHANG Li-tian, LIU Wei, LIU De-mei, DONG Rui-zhen, WANG Xiao-li, ZHANG Min, RENZENG Qu-zha, BIANBA Pu-chi, YANG Shi-hai, MA Yu-shou. Biomass Distribution Characteristics of Organs in the Reproductive Growth Period of Pennisetum centrasiaticum on the Qinghai-Tibet Plateau [J]. Acta Agrestia Sinica, 2021, 29(12): 2694-2702. |
[14] | LU Yong-xiang, ZHAO Man, CHEN Liang-yin, CHENGQi-ming, YOU Ming-hong, LI Da-xu, CHEN Shi-yong, BAI Shi-qie, LI Ping. Effects of Lactobacillus brucei and formic acid addition on fermentation quality and bacterial community of oat silage of different harvest stages in the Tibetan Plateau [J]. Acta Agrestia Sinica, 2020, 28(6): 1736-1743. |
[15] | ZHANG Yan-fen, YANG Xiao-xia, DONG Quan-min, ZHANG Chun-ping, YU Yang, YANG Zeng-zeng, FENG Bin, CHU Hui, WEI Lin-na, ZHANG Xiao-fang. Effects of Mixed Grazing of Yak and Tibetan Sheep on Feed Intake of Grazing Livestock and Plant Compensation Growth [J]. Acta Agrestia Sinica, 2019, 27(6): 1607-1614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||