[1] LECAIN D R,MORGAN J A,SCHUMAN G E,et al. Carbon exchange and species composition of grazed pastures and exclosures in the shortgrass steppe of Colorado[J]. Agriculture,Ecosystems and Environment,2002,93(1):421-435 [2] BILOTTA G S,KRUEGER T,BRAZIER R E,et al. Assessing catchment-scale erosion and yields of suspended solids from improved temperate grassland[J]. Journal of environmental monitoring,2010,12(3):731-739 [3] BILOTTA G S,BRAZIER R E,HAYGARTH P M,et al. Rethinking the contribution of drained and undrained grasslands to sediment-related water quality problems[J]. Journal of environmental quality,2008,37(3):906-914 [4] PIAO S L,FANG J Y,CIAIS P,et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458(7241):1009-1013 [5] 孙倩,张美玲,王鑫婧,等. 不同气候情景下甘肃草地碳收支时空模拟与预测[J]. 环境科学,2023:1-17 [6] 任正超,朱华忠,史华,等. 中国潜在自然植被NPP时空分布格局变化及其对气候和地形的响应[J]. 草地学报,2017,25(3):474-485 [7] 梁天刚,冯琦胜,黄晓东,等. 草原综合顺序分类系统研究进展[J]. 草业学报,2011,20(5):252-258 [8] REN J Z,HU Z Z,ZHAO J,et al. A grassland classification system and its application in China[J]. The Rangeland Journal,2008,30(2):199-209 [9] 林慧龙,范迪,冯琦胜,等. 草地综合顺序分类法研究新热点:2008-2020年回顾与展望[J]. 草业学报,2021,30(10):201-213 [10] SUN Z G,SUN C M,ZHOU W,et al. Classification and net primary productivity of the southern China's grasslands ecosystem based on improved comprehensive and sequential classification system (CSCS) approach[J]. Journal of Integrative Agriculture,2014,13(4):893-903 [11] LIN H L,FENG Q S,LIANG T G,et al. Modelling global-scale potential grassland changes in spatio-temporal patterns to global climate change[J]. International Journal of Sustainable Development & World Ecology,2013,20(1):83-96 [12] 任继周,梁天刚,林慧龙,等. 草地对全球气候变化的响应及其碳汇潜势研究[J]. 草业学报,2011,20(2):1-22 [13] 张彩荷,李纯斌,吴静. 基于草原综合顺序分类法的中国山地草地亚类分类研究[J]. 草业学报,2022,31(3):16-25 [14] 刚成诚,王钊齐,杨悦,等. 近百年全球草地生态系统净初级生产力时空动态对气候变化的响应[J]. 草业学报,2016,25(11):1-14 [15] LIANG T G,FENG Q S. Changes in global potential vegetation distributions from 1911 to 2000 as simulated by the comprehensive sequential classification system approach[J]. Chinese Science Bulletin,2012,57(11):1298-1310 [16] 王翀. 三江源区高寒草地净初级生产力模拟研究[D]. 兰州:兰州大学,2013:2-5 [17] JIAN N. Estimating Net Primary Productivity of Grasslands from Field Biomass Measurements in Temperate Northern China[J]. Plant Ecology,2004,174(2):217-234 [18] 张赟鑫,郝海超,范连连,等. 中亚草地NPP时空动态及其驱动因素研究[J]. 干旱区研究,2022,39(3):698-707 [19] 张美玲,陈全功,蒋文兰. 不同草地类型净初级生产力(NPP)模拟及其敏感性分析[J]. 干旱区地理,2021,44(2):369-378 [20] 巴桑参木决,温仲明,刘洋洋,等. 西藏草地净初级生产力的时空格局演变及其驱动机制分析[J]. 草地学报,2022,30(4):778-789 [21] 黄小涛,姚步青,马真,等. 青海高原草地净初级生产力和降水利用效率时空特征[J]. 草地学报,2021,29(S1):19-26 [22] SUN C M,ZHONG X C,CHEN C,et al. Evaluating the grassland net primary productivity of southern China from 2000 to 2011 using a new climate productivity model[J]. Journal of Integrative Agriculture,2015,15(7):1638-1644 [23] 任涵玉,温仲明,刘洋洋,等. 我国北方草地净初级生产力时空动态特征及其与水热因子的关系[J]. 草地学报,2021,29(8):1779-1792 [24] 张美玲,陈全功,闫培洁. 中国天然草地净初级生产力时空分布[J]. 草地学报,2018,26(5):1124-1131 [25] ZHANG S W,ZHANG R,LIU T X,et al. Empirical and model-based estimates of spatial and temporal variations in net primary productivity in semi-arid grasslands of Northern China[J]. Public Library of Science one,2017,12(11):e0187678 [26] LEI T J,FENG J,LV J,et al. Net Primary Productivity Loss under different drought levels in different grassland ecosystems[J]. Journal of Environmental Management,2020,274:111144 [27] GANG C C,ZHANG Y Z,WANG Z Q,et al. Modeling the dynamics of distribution,extent,and NPP of global terrestrial ecosystems in response to future climate change[J]. Global and Planetary Change,2017,148:153-165 [28] LIU Y Y,YANG Y,WANG Q,et al. Assessing the Dynamics of Grassland Net Primary Productivity in Response to Climate Change at the Global Scale[J]. Chinese Geographical Science,2019,29(5):725-740 [29] SUN Y F,CHANG J F,FANG J Y. Above- and belowground net-primary productivity:A field-based global database of grasslands[J]. Ecology,2022,104(2):e3904-e3904 [30] LI S Y,MIAO L J,JIANG Z H,et al. Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 20l5-2099[J]. Advances in Climate Change Research,2020,11(3):210-217 [31] HURTT G C,CHINI L,SAHAJPAL R,et al. Harmonization of global land use change and management for the period 850-2100 (LUH2) for CMIP6[J]. Geoscientific Model Development,2020,13(11):5425-5464 [32] ZHANG G G,KANG Y M,HAN G D,et al. Effect of climate change over the past half century on the distribution,extent and NPP of ecosystems of Inner Mongolia[J]. Global Change Biology,2011,17(1):377-389 [33] 周广胜,张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报,1996,20(1):11-19 [34] 周广胜,张新时. 自然植被净第一性生产力模型初探[J]. 植物生态学报,1995,19(3):193-200 [35] SEINO H,UCHIJIMA Z. Agroclimatic evaluation of net primary productivity of natural vegetation[J]. Journal of the Meteorological Society of Japan,1985,40(4):343-352 [36] OLOSN R J,SCURLOCK J,PRINCE S D,et al. NPP Multi-Bome:Global Primary Production Data Initiative Products,R2. Data set[DB/OL]. http://daac.ornl.gov/2013-08-29/2023-08-23 [37] JAGER H I,HARGROVE W W,BRANDT C C,et al. Constructive contrasts between modeled and measured climate responses over a regional scale[J]. Ecosystems,2000,3(4):396-411 [38] 任正超,朱华忠,史华,等. 最后间冰期至未来2070 s中国潜在自然植被时空分布格局及其对气候变化的响应[J]. 自然资源学报,2020,35(6):1484-1498 [39] ZAREI A,ASADI E,EBRAHIMII A,et al. Prediction of future grassland vegetation cover fluctuation under climate change scenarios[J]. Ecological Indicators,2020,119:106858 [40] CHANG J F,PHILIPPE C,NICOLAS V,et al. Future productivity and phenology changes in European grasslands for different warming levels:implications for grassland management and carbon balance[J]. Carbon Balance and Management,2017,12(1):11 |