Acta Agrestia Sinica ›› 2025, Vol. 33 ›› Issue (7): 2078-2089.DOI: 10.11733/j.issn.1007-0435.2025.07.004
Previous Articles Next Articles
LIU Chang1,2,3, CHEN Ji-shan2,3, ZHU Rui-fen2,3, SUN Wan-bin2,3, YAO Bo2,3, DONG Shui-kui1,4
Received:2024-08-16
Revised:2024-12-04
Online:2025-07-15
Published:2025-07-18
刘畅1,2,3, 陈积山2,3, 朱瑞芬2,3, 孙万斌2,3, 姚博2,3, 董世魁1,4
通讯作者:
董世魁,E-mail:dongshikui@bjfu.edu.cn
作者简介:刘畅(1996-),女,汉族,辽宁盘锦人,博士研究生,主要从事草地生态保护研究,E-mail:liuchang-1010@qq.com
基金资助:CLC Number:
LIU Chang, CHEN Ji-shan, ZHU Rui-fen, SUN Wan-bin, YAO Bo, DONG Shui-kui. Meta-analysis of the Impacts of Nitrogen Addition on Biomass and Soil Organic Carbon Content of China Grasslands[J]. Acta Agrestia Sinica, 2025, 33(7): 2078-2089.
刘畅, 陈积山, 朱瑞芬, 孙万斌, 姚博, 董世魁. 氮添加对中国草地生物量和土壤有机碳含量影响的Meta分析[J]. 草地学报, 2025, 33(7): 2078-2089.
| [1] KANAKIDOU M, MYRIOKEFALITAKIS S, DASKALAKIS N, et al. Past present and future atmospheric nitrogen deposition[J]. Journal of the Atmospheric Sciences, 2016, 73(5):2039-2047 [2] LIU L, ZHANG T, GILLIAM F S, et al. Interactive Effects of nitrogen and phosphorus on soil microbial communities in a tropical forest[J]. Plos One, 2013, 8(4):1-10 [3] 魏芙蓉. 氮添加影响白羊草草地土壤碳氮转化的机制[D]. 杨凌:西北农林科技大学, 2023:3-11 [4] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions[J]. Science, 2008, 320(2878):889-892 [5] CHENG Y, WANG J, GE Z, et al. Background nitrogen deposition controls the effects of experimental nitrogen addition on soil gross N transformations in forest ecosystems[J]. Biogeochemistry, 2020, 151(1):335-341 [6] XU L, YU G R, HE N P, et al. Carbon storage in China's terrestrial ecosystems:A synthesis[J]. Scientific Reports, 2018, 8(1):1-13 [7] TANG X L, ZHAO X, BAI Y F, et al. Carbon pools in China's terrestrial ecosystems:New estimates based on an intensive field survey[J]. Proceedings of the National Academy of Sciences, 2018, 115(16):4021-4026 [8] STEVENS C J, DISE N B, MOUNTFORD J O, et al. Impact of nitrogen deposition on the species richness of grasslands[J]. Science, 2004, 303(5665):1876-1879 [9] LU X F, HOU E Q, GUO J Y, et al. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China:A meta-analysis[J]. Global Change Biology, 2021, 27(12):2780-2792 [10] 张乃木, 宋娅丽, 王克勤, 等. 模拟氮沉降下滇中亚高山森林凋落物养分元素释放特征[J]. 生态环境学报, 2021, 30(5):920-928 [11] LEFF J W, JONES S E, PROBER S M, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe[J]. Proceeding of the National of Sciences of the United States of America, 2015, 112(35):10967-10972 [12] 刘春华, 吴东梅, 刘雨晖, 等. 氮沉降对米槠天然林土壤有机碳及微生物群落结构的影响[J]. 林业科学研究, 2021, 34(2):42-49 [13] XU C H, XU X, JU C H, et al. Long‐term, amplified responses of soil organic carbon to nitrogen addition worldwide[J]. Global Change Biology, 2021, 27(6):1170-1180 [14] 秦洁. 长期氮沉降对贝加尔针茅草原土壤微生物群落的影响机制[D]. 北京:中国农业科学院, 2021:53-60 [15] 陈天, 程瑞梅, 沈雅飞, 等. 氮添加对三峡库区马尾松人工林土壤团聚体有机氮组分和氮矿化的影响[J]. 应用生态学报, 2023, 34(10):2601-2609 [16] ZAK D R, FREEDMAN Z B, UPCHURCH R, et al. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition[J]. Global Change Biology, 2017, 23(2):933-944 [17] MACK M C, SCHUUR E A, BRETHARTE M S, et al. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization[J]. Nature, 2004, 431(7007):440-443 [18] 李焕茹, 朱莹, 田纪辉, 等. 碳氮添加对草地土壤有机碳氮磷含量及相关酶活性的影响[J]. 应用生态学报, 2018, 29(8):2470-2476 [19] WANG C H, ZHU F, ZHAO X, et al. The effects of N and P additions on microbial N transformations and biomass on saline-alkaline grassland of loess plateau of northern china[J]. Geoderma, 2014, 213(1):419-425 [20] CHEN J, LUO Y, VAN GROENIGEN K J, et al. A keystone microbial enzyme for nitrogen control of soil carbon storage[J]. Science Advances, 2018, 4(8):1689-1695 [21] WAN D, MA M, PENG N, et al. Effects of long-term fertilization on calcium-associated soil organic carbon:Implications for C sequestration in agricultural soils[J]. Science of the Total Environment, 2021, 772(1):1-9 [22] SHI Y, SHENG L X, WANG Z Q, et al. Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia[J]. Eurasian Soil Science, 2016, 49(10):1149-1160 [23] FAY P, PROBER S, HARPOLE W, et al. Grassland productivity limited by multiple nutrients[J]. Nature Plants, 2015, 1(7):1-5 [24] SEABLOOM E, ADLER P, ALBERTI J, et al. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time[J]. Ecology, 2021, 102(2):1-11 [25] GRIMM N B, CHAPIN F S, BIERWAGEN B, et al. The impacts of climate change on ecosystem structure and function[J]. Frontiers in Ecology and the Environment, 2013, 11(9):474-482 [26] WALTHER G R. Community and ecosystem responses to recent climate change[J]. Philosophical Transactions of the Royal Society B-Biological sciences, 2010, 365(1549):2019-2024 [27] 王誉陶. 降水变化与氮沉降对黄土高原典型草原生态系统多功能性的影响[D]. 银川:宁夏大学, 2023:104-106 [28] CHEN J, LUO Y Q, XIA J Y, et al. Warming effects on ecosystem carbon fluxes are modulated by plant functional types[J]. Ecosystems, 2017, 20(3):515-526 [29] 傅华, 陈亚明, 王彦荣, 等. 阿拉善主要草地类型土壤有机碳特征及其影响因素[J]. 生态学报, 2004, 24(3):469-476 [30] JIN V L, HANEY R L, FAY P A, et al. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality[J]. Soil Biology and Biochemistry, 2013, 58(1):172-180 [31] HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4):1150-1156 [32] VIECHTBAUER W. Conducting meta-analyses in R with the meta for package[J]. Journal of Statistical Software, 2010, 36(3):1-48 [33] BENÍTEZ-LÓPEZ A, ALKEMADE R, SCHIPPER A M, et al. The impact of hunting on tropical mammal and bird populations[J]. Science, 2017, 356(6334):180-183 [34] ZHAO J, YANG Y D, ZHANG K, et al. Does crop rotation yield more in China? A meta-analysis[J]. Field Crops Research, 2020, 245(1):107659-107668 [35] HIGGINS J P T, THOMPSON S G, DEEKS J J, et al. Measuring inconsistency in meta-analyses[J]. British Medical Journal, 2003, 327(7414):557-560 [36] VIECHTBAUER W. Conducting meta-analyses in R with the metafor package[J]. Journal of Statistical Software, 2010, 36(3):1-48 [37] EGGER M, SMITH G D, SCHNEIDER M, et al. Bias in meta-analysis detected by a simple, graphical test-Reply[J]. British Medical Journal, 1997, 315(7109):629-634 [38] ERISMAN B E, BOLSER D G, ILICH A, et al. A meta-analytical review of the effects of environmental and ecological drivers on the abundance of red snapper (Lutjanus campechanus) in the U.S. Gulf of Mexico[J]. Reviews in Fish Biology and Fisheries, 2020, 30(2):437-462 [39] LEFCHECK J S. piecewiseSEM:Piecewise structural equation modeling in R for ecology, evolution, and systematics[J]. Methods in Ecology and Evolution, 2016, 7:573-579 [40] PREGITZER K S, BURTON A J, ZAK D R, et al. Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests[J]. Global Change Biology, 2007, 14(1):142-153 [41] SCHULTE-UEBBING L, DE VRIES W. Global‐scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests:A meta‐analysis[J]. Global Change Biology, 2017, 24(5878):416-431 [42] YUE K, FORNARA D A, LI W, et al. Nitrogen addition affects plant biomass allocation but not allometric relationships among different organs across the globe[J]. Journal of Plant Ecology, 2020, 14(3):361-371 [43] KELLER A B, BORER E T, COLLINS S L, et al. Soil carbon stocks in temperate grasslands differ strongly across sites but are insensitive to decade‐long fertilization[J]. Global Change Biology, 2022, 28(4):1659-1677 [44] FORNARA D A, TILMAN D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition[J]. Ecology Letters, 2012, 93(9):2030-2036 [45] 张丹, 邓健, 朱运, 等. 氮添加对黄土丘陵区草地土壤团聚体有机碳库的影响[J]. 草地学报, 2023, 31(7):2031-2040 [46] SEABLOOM E W, KINKEL L, BORER E T, et al. Food webs obscure the strength of plant diversity effects on primary productivity[J]. Ecology Letters, 2017, 20(4):505-512 [47] EBELING A, STRAUSS A T, ADLER P B, et al. Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands[J]. Journal of Ecology, 2021, 110(2):327-339 [48] 肖胜云, 董云社, 齐玉春, 等. 草地生态系统土壤有机碳库对人为干扰和全球变化的响应研究进展[J]. 地球科学进展, 2009, 24(10):1138-1148 [49] ZHANG T A, CHEN H Y, RUAN H. Global negative effects of nitrogen deposition on soil microbes[J]. The ISME Journal, 2018, 12(7):1817-1825 [50] YANG Y, LI T, POKHAREL P, et al. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate[J]. Soil Biology and Biochemistry, 2022, 174(5):1-11 [51] MANZONI S, TAYLOR P, RICHTER A, et al. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils[J]. New Phytologist, 2012, 196(1):79-91 [52] SPOHN M, PÖTSCH E M, EICHORST S A, et al. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland[J]. Soil Biology and Biochemistry, 2016, 97(1):168-175 [53] 张祚恩, 刁华杰, 郝杰, 等. 不同氮化合物添加对农牧交错带草地土壤净氮矿化速率的影响[J]. 草地学报, 2023, 31(5):1322-1330 [54] HARRISON K A, BOL R, BARDGETT R D. Preferences for different nitrogen forms by coexisting plant species and soil microbes[J]. Ecology, 2007, 88(4):989-999 [55] PENG Y F, LI F, ZHOU G Y, et al. Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe[J]. Global Change Biology, 2017, 23(12):5249-5259 [56] YANG G J, STEVENS C, ZHANG Z J, et al. Different nitrogen saturation thresholds for above-, below-, and total net primary productivity in a temperate steppe[J]. Global Change Biology, 2023, 29(16):4586-4594 [57] YAO M, RUI J, LI J, et al. Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the leymus chinensis steppe[J]. Soil Biology and Biochemisty, 2014, 79(1):81-90 [58] ZHANG J Y, AI Z M, LIANG C T, et al. Response of soil microbial communities and nitrogen thresholds of Bothriochloa ischaemum to short-term nitrogen addition on the Loess Plateau[J]. Geoderma, 2017, 308(1):112-119 [59] 刘蔚秋, 刘滨扬, 王江, 等. 不同环境条件下土壤微生物对模拟大气氮沉降的响应. 生态学报, 2010, 30(7):1691-1698 [60] 张成霞, 南志标. 土壤微生物生物量的研究进展[J].草业科学, 2010, 27(6):50-57 [61] 刁励玮, 李平, 刘卫星, 等. 草地生态系统生物量在不同气候及多时间尺度上对氮添加和增雨处理的响应[J]. 植物生态学报, 2018, 42(08):818-830 [62] AVOLIO M L, KOERNER S E, PIERRE K J L, et al. Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in a tallgrass prairie[J]. Journal of Ecology, 2014, 102(6):1540-1553 [63] 景明慧, 贾晓彤, 张运龙, 等. 长期氮添加对内蒙古典型草原植物地上、地下生物量及根冠比的影响[J]. 生态学杂志, 2020, 39(10):3185-3193 [64] BAI Y F, WU J G, CLARK C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:evidence from inner Mongolia Grasslands[J]. Global Change Biology, 2010, 16(1):358-372 [65] LAN Z C, BAI Y F. Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland:critical thresholds and implications for long-term ecosystem responses[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2012, 367(1606):3125-3134 [66] CHEN D, LAN Z, HU S, et al. Effects of nitrogen enrichment on belowground communities in grassland:relative role of soil nitrogen availability vs. soil acidification[J]. Soil Biology and Biochemistry, 2015, 89:99-108 [67] WILCOTS M E, SCHROEDER K M, DELANCEY LC, et al. Realistic rates of N addition increase carbon flux rates but do not change soil carbon stocks in a temperate grassland. Global Change Biology[J], 2022, 28, 4819-4831 [68] 白永飞. 降水量季节分配对克氏针茅草原群落初级生产力的影响[J]. 植物生态学报, 1999, 23(2):60-65 [69] LIU Y W, XU R, XU X L, et al. Plant and soil responses of an alpine steppe on the Tibetan Plateau to multi-level nitrogen addition[J]. Plant and Soil, 2013, 373(1):515-529 [70] LI J H, HOU Y L, ZHANG S X, et al. Fertilization with nitrogen and/or phosphorus lowers soil organic carbon sequestration in alpine meadows[J]. Land Degradation and Development, 2017, 29(6):1634-1641 [71] GUO Q, HU Z, LI S, et al. Nitrogen-induced changes in carbon fluxes are modulated by water availability in a temperate grassland[J]. Journal of Geophysical Research Biogeosciences, 2021, 126(12):1-14 [72] 霍利霞, 红梅, 赵巴音那木拉, 等. 氮素和水分添加对荒漠草原土壤理化性质及微生物量碳氮的影响[J]. 北方农业学报, 2018, 46(3):54-59 [73] 何宇, 盛茂银, 王轲, 等. 土地利用变化对西南喀斯特土壤团聚体组成、稳定性以及C、N、P化学计量特征的影响[J]. 环境科学, 2022, 43(7):3752-3762 [74] 陈洁, 骆土寿, 周璋, 等. 氮沉降对热带亚热带森林土壤氮循环微生物过程的影响研究进展[J]. 生态学报, 2020, 40(23):8528-8538 [75] 王丽娜, 罗久富, 杨梅香, 等. 氮添加对退化高寒草地土壤微生物量碳氮的影响[J]. 草业学报, 2019, 28(7):38-48 [76] BAI Y, WU J, PAN Q, et al. Positive linear relationship between productivity and diversity:Evidence from the Eurasian Steppe[J]. Journal of Applied Ecology, 2007, 44(5):1023-1034 [77] 钟泽坤. 增温和降雨改变对黄土丘陵区撂荒草地土壤碳循环关键过程的影响[D]. 杨凌:西北农林科技大学, 2021:108-109 [78] 贺云龙, 齐玉春, 彭琴, 等. 外源碳和氮输入对降水变化下土壤呼吸的短期影响[J]. 环境科学, 2018, 39(4):1934-1942 [79] CRAFT C B, WASHBURN C, PARKER A. Latitudinal Trends in Organic Carbon Accumulation in Temperate Freshwater Peatlands[J]. Springer Netherlands, 2008, 23(3):23-31 [80] LOVELOCK C E, ADAME M F, BENNION V, et al. Contemporary rates of carbon sequestration through vertical accretion of sediments in mangrove forests and saltmarshes of south east queensland, Australia[J]. Estuaries and Coasts, 2014, 37(3):763-771 [81] SHANG L N, ZHANG Z S, SONG X L, et al. Carbon sequestration and nutrient accumulation(N and P)in two typical wetlands in Sanjiang Plain, Northeast China[J]. Fresenius Environmental Bulletin, 2015, 24(2):422-428 [82] DIAO H, CHEN X, ZHAO X, et al. Effects of nitrogen addition and precipitation alteration on soil respiration and its components in a saline-alkaline grassland[J]. Geoderma, 2022, 406(1):1-11 [83] BAI T S, WANG P, HALL S J, et al. Interactive global change factors mitigate soil aggregation and carbon change in a semi-arid grassland[J]. Global Change Biology, 2020, 26(9):5320-5332 [84] BLANCO-CANQUI H, LAL R. Mechanisms of carbon sequestration in soil aggregates[J]. Critical Reviews in Plant Sciences, 2004, 23(6):481-504 [85] ZHONG Z K, HAN X H, XU Y D, et al. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China[J]. Land Degradation and Development, 2019, 30(9):1070-1082 [86] ZHONG Z K, WU S J, LU X Q, et al. Organic carbon, nitrogen accumulation, and soil aggregate dynamics as affected by vegetation restoration patterns in the Loess Plateau of China[J]. Catena, 2021, 196(1):1-9 [87] 马志良, 赵文强. 植物群落向土壤有机碳输入及其对气候变暖的响应研究进展[J]. 生态学杂志, 2020, 39(1):270-281 [88] 彭琴, 齐玉春, 董云社, 等. 干旱半干旱地区草地碳循环关键过程对降雨变化的响应[J]. 地理科学进展, 2012, 31(11):1510-1518 |
| [1] | ZHANG Lei, ZHANG Yu-juan, SUN Shi-xian, XU Xue-bao, XING Yue, LIU Xiao-li, GAO Cui-ping, WANG Cheng-jie. Effects of Different Grazing Intensities on Soil Organic Carbon Content in Desert Steppe [J]. Acta Agrestia Sinica, 2025, 33(8): 2541-2547. |
| [2] | DUAN Jun-guang, FANG Kai, PEI Lu, CHU Jian-min, ZHANG Jin-xin, LI Xiao-xia, WANG Ying-xin. Changes of Trade-offs Between Aboveground and Belowground Plant Biomass Across Different Grazing Intensities of Alpine Meadow [J]. Acta Agrestia Sinica, 2025, 33(8): 2575-2584. |
| [3] | CAI Ming-ming, CHEN Hui-min, WANG Xiao-tie, TAN Hua, CHEN Jia-xuan, LONG Ming-xiu. Effects of Cover Crops on Soil Organic Carbon and Microbial Community Characteristics of Organic Kiwifruit Orchards in Guanzhong Region [J]. Acta Agrestia Sinica, 2025, 33(7): 2162-2171. |
| [4] | ZHONG Hua, HAO Jie, LIANG Wen-jun, Gao Yang-yang, LI Lang, WANG Ya-nan, WANG Chang-hui, DONG Kuan-hu. Effects of Various Nitrogen Forms Addition on Grassland Biomass in the Agro-Pastoral Ecotone in Northern Shanxi [J]. Acta Agrestia Sinica, 2025, 33(7): 2198-2205. |
| [5] | WANG Sheng-ju, LIU Wen-hao, JIN Gui-li, CUI Guo-ying, ZHANG Yong-juan, WEI Xiu-hong, LI Chao, CHEN Meng-tian, LI Wen-xiong, DU Wen-lin. Temporal and Spatial Changes of Grassland Aboveground Biomass and Its Response to Climate Factors in Xinjiang [J]. Acta Agrestia Sinica, 2025, 33(7): 2320-2332. |
| [6] | TA Wen-yan, LIU Ya-li, ZHANG Jing, LI Yao-ming, MAIMAITIYIMING Gu-linuer, JI Bao-ming. Soil Conservation Service Assessment and Risk Management of Grassland Ecosystem in Xinjiang [J]. Acta Agrestia Sinica, 2025, 33(7): 2333-2344. |
| [7] | YAO Jun-fei, WEI Guo-liang, WU Fa-liang, LI Xu-dong, Adihaze, SHI Zheng-chen, ZHANG Zhong-hua, MA Li, LI Shan, LI Hong-lin, LI Qiang-feng, WANG Zhen, ZHOU Hua-kun, ZHANG Qiang. Effects of Different Grazing Management Practices on the Contents of Soils and Microbiomass and Their Stoichiometric Characteristics in Alpine Grassland [J]. Acta Agrestia Sinica, 2025, 33(6): 1749-1755. |
| [8] | LI Yan, XU Jing-hang, WU Jian-ping. Effects of Biochar Addition on Plant Biomass in A Degraded Cultivated Grassland in Zhaotong, Yunnan Province [J]. Acta Agrestia Sinica, 2025, 33(6): 1991-2001. |
| [9] | WANG Ya-fei, YANG Jie, ZHOU Jie. Visualization Analysis of Grassland Ecosystem Researches Using CiteSpace Based on the CNKI Database [J]. Acta Agrestia Sinica, 2025, 33(5): 1639-1647. |
| [10] | XU Ai-yun, QIN Yi-tong, ZHANG Yuan-hong, LI Tian, CAO Bing. Effects of Elevated CO2 Concentration on the Growth of Agropyron mongolicum Under Short-Term Nitrogen Addition Scenario [J]. Acta Agrestia Sinica, 2025, 33(4): 1211-1217. |
| [11] | LI Wen-xiong, JIN Gui-li, LIU Wen-hao, LI Jia-xin, WANG Sheng-ju, CHEN Meng-tian, LI Chao, DU Wen-lin, Davuletti Khaled Samugal, Serik Eli Yeridana. Research on Aboveground Biomass Inversion of Desert Grassland Based on UAV Remote Sensing [J]. Acta Agrestia Sinica, 2025, 33(4): 1258-1266. |
| [12] | HAO Jie, NIU Hui-min, WANG Chang-hui, DIAO Hua-jie, WU Shuai-kai, SU Yuan, GAO Yang-yang, LIANG Wen-jun, YANG Xiu-yun, DONG Kuan-hu. Effects of Nutrient Addition and Shallow Plowing on the Biomass of Grasslands in the Agro-pastoral Ecotone of Northern Shanxi [J]. Acta Agrestia Sinica, 2025, 33(4): 1299-1307. |
| [13] | ALIMIRI-Alimujiang, TANG Bang-jie, KONG Fan-xi, CUI Wen-kai, CHEN Jun. Study on Convenient Estimation Technique of Aboveground Biomass of Natural Grassland in Xinjiang [J]. Acta Agrestia Sinica, 2025, 33(4): 1308-1315. |
| [14] | GAO Yang-yang, LIN Mao, LIANG Wen-jun, HAO Jie, DIAO Hua-jie, WANG Chang-hui, SU Yuan, DONG Kuan-hu. Nitrogen Addition Decreased Potassium Resorption Efficiency of Leymus Secalinus Leaf in a Semi-Arid Grassland of Northern Shanxi [J]. Acta Agrestia Sinica, 2025, 33(3): 806-812. |
| [15] | AN Hai-tao, SUN Cai-cai, DONG Quan-min, YANG Xiao-xia, LIU Wen-ting, WANG Xin-xin, WANG Xiao-li, ZHAO Xin-quan. Responses of Rhizosphere Soil and Bulk Soils Microbial Activity to Livestock Assembly [J]. Acta Agrestia Sinica, 2025, 33(3): 813-822. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||