[1] 胡凡,石磊,李茹,等.陕西关中地区猕猴桃施肥现状评价[J].中国土壤与肥料,2017,3(3):44-49 [2] 谭华,靳旭妹,蔡明明,等.生草对关中地区有机猕猴桃园土壤理化性质及细菌群落的影响[J].草地学报,2024,32(3):667-676 [3] WEI H, XIANG Y Z, LIU Y, et al. Effects of sod cultivation on soil nutrients in orchards across China:A meta -analysis[J]. Soil and Tillage Research,2017(169):16-24 [4] 田玉莉,吴小苹,陈欣佛,等.黄土高原果园不同覆盖模式对土壤酶活性的影响[J].草地学报,2022,30(10):2581-2589 [5] 肖力婷,杨慧林,黄文新,等.生草栽培对南丰蜜橘园土壤酶活性及氮循环功能微生物的影响[J].应用与环境生物学报,2021,27(6):1476-1484 [6] WIESMEIER M, URBANSKI L, HOBLEY E, et al. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales[J]. Geoderma,2019(333):149-162 [7] ZHENG W, GONG Q L, ZHAO Z Y, et al. Changes in the soil bacterial community structure and enzyme activities after intercrop mulch with cover crop for eight years in an orchard[J]. European Journal of Soil Biology,2018(86):34-41 [8] GARCIA-FRANCO N, ALBALADEJO J, ALMAGRO M, et al. Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem[J]. Soil and Tillage Research,2015(153):66-75 [9] XIANG Y Z, LI Y, LIU Y, et al. Factors shaping soil organic carbon stocks in grass covered orchards across China:A meta-analysis[J]. Science of the Total Environment,2022(807):150632 [10] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology,2017,2(8):17105 [11] ZHAO X P, HAO C K, ZHANG R Q, et al. Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation[J]. Soil Biology and Biochemistry,2023(185):109146 [12] WANG Y J, LIU L, LUO Y, et al. Mulching practices alter the bacterial-fungal community and network in favor of soil quality in a semiarid orchard system[J]. Science of the Total Environment,2020(725):138527 [13] YANG Y, DOU Y X, WANG B R, et al. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence[J]. Soil Biology and Biochemistry,2022(170):108688 [14] 黄国华,宁心怡,卢玉鹏,等.基于果园生草模式的固碳潜力及影响研究进展[J].北方园艺,2023(14):146-153 [15] HASHIMI R, HUANG Q L, DEWI R K, et al. No-tillage and rye cover crop systems improve soil water retention by increasing soil organic carbon in Andosols under humid subtropical climate[J]. Soil and Tillage Research,2023(234):105861 [16] 刘崇义,靳旭妹,王莹莹,等.生草对关中平原有机猕猴桃园土壤养分及细菌群落的影响[J].草地学报,2021,29(12):2711-2720 [17] YAN H L, GU S S, LI S Z, et al. Grass-legume mixtures enhance forage production via the bacterial community[J]. Agriculture, Ecosystems & Environment,2022(338):108087 [18] 鲍士旦.土壤农化分析[M].第三版.北京:中国农业出版社,2000:30-34 [19] GUAN S, AN N, ZONG N, et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow[J]. Soil Biology and Biochemistry,2018(116):224-236 [20] GUAN S Y, ZHANG D, ZHANG Z. Soil Enzyme and Its Research Methods[M]. Beijing:Chinese Agricultural Press,1986:274-297 [21] SINSABAUGH R L, HILL B H, FOLLSTAD S J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature,2009,462(7274):795-798 [22] 窦艳星,王宝荣,廖娇娇,等.黄土高原不同人工林型微生物残体碳对土壤有机碳组分的积累贡献及影响因素[J].生态学报,2024,44(13):1-14 [23] ZHANG X M, GUO J H, VOGT R D, et al. Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands[J]. Geoderma,2020(366):114234 [24] WANG Y J, LIU L, TIAN Y L, et al. Temporal and spatial variation of soil microorganisms and nutrient under white clover cover[J]. Soil and Tillage Research,2020(202):104666 [25] LIU B, XIA H, JIANG C C, et al. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China[J]. Science of the Total Environment,2022(841):156608 [26] 董秀,张燕,TITO M,等.长期保护性耕作对黄土高原旱作农田土壤碳含量及转化酶活性的影响[J].中国农业科学,2023,56(5):907-919 [27] 吴超玉,王洋,牛晓倩,等.关中平原地区果园和农田土壤有机碳组分及碳库特征[J].中国土壤与肥料,2023(5):158-163 [28] HU Q J, JIANG T, THOMAS B W, et al. Legume cover crops enhance soil organic carbon via microbial necromass in orchard alleyways[J]. Soil and Tillage Research,2023(234):105858 [29] ZHUANG G, LI S Y, BOL R, et al. Differential long-term fertilization alters residue-derived labile organic carbon fractions and microbial community during straw residue decomposition[J]. Soil and Tillage Research,2021(213):105120 [30] LI Y, ZHANG W, LI J, et al. Complementation between microbial necromass and plant debris governs the long-term build-up of the soil organic carbon pool in conservation agriculture[J]. Soil Biology and Biochemistry,2023(178):108963 [31] XIAO W Y, CHEN H Y H, KUMAR P, et al. Multiple interactions between tree composition and diversity and microbial diversity underly litter decomposition[J]. Geoderma,2019(341):161-171 [32] TAO F, HUANG Y Y, HUNGATE B A, et al. Microbial carbon use efficiency promotes global soil carbon storage[J]. Nature,2023,618(7967):981-985 [33] ZHENG W, ZHAO Z Y, GONG Q L, et al. Responses of fungal-bacterial community and network to organic inputs vary among different spatial habitats in soil[J]. Soil Biology and Biochemistry,2018(125):54-63 [34] YUAN M M, GUO X, WU L W, et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change,2021,11(4):343-348 |