Acta Agrestia Sinica ›› 2025, Vol. 33 ›› Issue (11): 3581-3592.DOI: 10.11733/j.issn.1007-0435.2025.11.010
GUO Rong-ming1, ZHAO Xin1, YANG Jun-hui1, CHENG Fang-fang1, CHEN Xin-yan2
Received:2024-12-11
Revised:2025-02-09
Published:2025-11-13
郭荣明1, 赵芯1, 杨君辉1, 程方方1, 陈鑫艳2
通讯作者:
陈鑫艳,E-mail:2849699340@qq.com
作者简介:郭荣明(1992-),男,汉族,云南楚雄人,硕士研究生,主要从事牧草栽培种植及植被恢复研究,E-mail:1052425235@qq.com;
基金资助:CLC Number:
GUO Rong-ming, ZHAO Xin, YANG Jun-hui, CHENG Fang-fang, CHEN Xin-yan. Effects of Degradation of Alpine Desert Steppe on Soil Bacterial Community in Southwestern of the Xizang Plateau[J]. Acta Agrestia Sinica, 2025, 33(11): 3581-3592.
郭荣明, 赵芯, 杨君辉, 程方方, 陈鑫艳. 青藏高原西南部高寒荒漠草原退化对土壤细菌群落的影响[J]. 草地学报, 2025, 33(11): 3581-3592.
| [1] LI Z W,MIAO Y J,ZONG N. Effects of grazing exclusion on plant diversity and ecosystem multifunctionality of alpine grasslands in northern Xizang[J]. Acta Agrestia Sinica,2025,33(2):596-608 李振威,缪雨珏,宗宁. 围栏封育对藏北高寒草地植物多样性与生态系统多功能性的影响[J]. 草地学报,2025,33(2):596-608 [2] Xizang Autonomous Region Department of Agriculture and Animal Husbandry. Grassland Resources and Ecology in Tibet Autonomous Region[M]. Beijing: China Agriculture Press,2018:221 西藏自治区农牧厅. 西藏自治区草地资源与生态[M]. 北京:中国农业出版社,2018:221 [3] DE VRIES F T,MANNING P,TALLOWIN J R B,et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities[J]. Ecology Letters,2012,15(11):1230-1239 [4] DELGADO-BAQUERIZO M,BARDGETTt R D,VITOUSEK P M,et al. Changes in belowground biodiversity during ecosystem development[J]. Proceedings of the National Academy of Sciences,2019,116(14):6891-6896 [5] HE S,RICHARDS K. Impact of meadow degradation on soil water status and pasture management-A case study in Tibet[J]. Land Degradation & Development,2015,26(5):468-479 [6] YU Y,ZHENG L,ZHOU Y J,et al. Changes in soil microbial community structure and function following degradation in a temperate grassland[J]. Journal of Plant Ecology,2021,14(3):384-397 [7] FIERER N,BRADFORD M A,JACKSON R B. Toward an ecological classification of soil bacteria[J]. Ecology,2007,88(6):1354-1364 [8] RESZKOWSKA A,KRÜMMELBEIN J,PETH S,et al. Influence of grazing on hydraulic and mechanical properties of semiarid steppe soils under different vegetation type in Inner Mongolia,China[J]. Plant and Soil,2011,340(1):59-72 [9] CHU H Y,FIERER N,LAUBER C L,et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environmental Microbiology,2010,12(11):2998-3006 [10] CHE R X,WANG F,WANG W J,et al. Increase in ammonia-oxidizing microbe abundance during degradation of alpine meadows may lead to greater soil nitrogen loss[J]. Biogeochemistry,2017,136(3):341-352 [11] CHE R X,WANG Y F,LI K X,et al. Degraded patch formation significantly changed microbial community composition in alpine meadow soils[J]. Soil and Tillage Research,2019,195:104426 [12] LORANGER-MERCIRIS G,BARTHES L,GASTINE A,et al. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems[J]. Soil Biology and Biochemistry,2006,38(8):2336-2343 [13] WAN W J,GROSSART H P,HE D L,et al. Stronger environmental adaptation of rare rather than abundant bacterioplankton in response to dredging in eutrophic Lake Nanhu (Wuhan,China)[J]. Water Research,2021,190:116751 [14] ZHANG X Q,JIN Y M,TIAN J C,et al. Seasonal changes of nutrient content and in vitro digestibility of five grass species in Tibetan alpine grassland[J]. Chinese Journal of Grassland,2022,44(1):71-77 张晓庆,金艳梅,田峻成,等. 西藏高寒草原5种牧草养分含量及体外消化率季节变化[J]. 中国草地学报,2022,44(1):71-77 [15] Northwest Institute of Plateau Biology, Chinese Academy of Sciences. DB63/T 981-2011 Classification of degradation levels for alpine grassland [S]. Xining: Qinghai Provincial Bureau of Quality and Technical Supervision, 2011: 1-10 中国科学院西北高原生物研究所. DB63/T 981-2011 高寒草原退化等级划分[S].西宁:青海省质量技术监督局,2011:1-10 [16] LIU M J,REN Y,ZHANG W H. Rare bacteria can be used as ecological indicators of grassland degradation[J]. Microorganisms,2023,11(3):754 [17] Ministry of Agriculture of the People's Republic of China. NY/T 1377-2007 Determination of soil pH [S]. Beijing: China Standard Press, 2007: 1-5 中华人民共和国农业部. NY/T 1377-2007 土壤pH值的测定[S].北京:中国标准出版社,2007:1-5 [18] State Forestry Administration. LY/T 1213-1999 Determination of forest soil water content [S]. Beijing: China Standard Press, 1999: 1-3 国家林业局. LY/T 1213-1999 森林土壤含水量的测定[S]. 北京:中国标准出版社,1999:1-3 [19] Ministry of Agriculture of the People's Republic of China. NY/T 1121.24-2012 Soil Testing - Part 24: Determination of total soil nitrogen - automatic Kjeldahl apparatus method [S]. Beijing: China Standard Press, 2012: 1-6 中华人民共和国农业部. NY/T 1121.24-2012 土壤检测 第24部分:土壤全氮的测定 自动定氮仪法[S]. 北京:中国标准出版社,2012:1-6 [20] State Forestry Administration. LY/T 1237-1999 Determination of forest soil organic matter and calculation of carbon-nitrogen ratio [S]. Beijing: China Standard Press, 1999: 1-4 国家林业局. LY/T 1237-1999 森林土壤有机质的测定及碳氮比的计算[S]. 北京:中国标准出版社,1999:1-4 [21] State Forestry Administration. LY/T 1232-2015 Determination of forest soil phosphorus [S]. Beijing: China Standard Press, 2015: 1-24 国家林业局. LY/T 1232-2015 森林土壤磷的测定[S]. 北京:中国标准出版社,2015:1-24 [22] State Forestry Administration. LY/T 1228-2015 Determination of forest soil nitrogen [S]. Beijing: China Standard Press, 2015: 1-24 国家林业局. LY/T 1228-2015 森林土壤氮的测定[S]. 北京:中国标准出版社,2015:1-24 [23] Ministry of Agriculture of the People's Republic of China. NY/T 889-2004 Determination of available potassium and slowly available potassium in soil [S]. Beijing: China Agriculture Press, 2005: 1-5 中华人民共和国农业部. NY/T 889—2004 土壤速效钾和缓效钾含量的测定[S]. 北京:中国农业出版社,2005:1-5 [24] State Forestry Administration. LY/T 1248-1999 Determination of exchangeable sodium in alkali soil [S]. Beijing: China Standard Press, 1999: 1-3 国家林业局. LY/T 1248-1999 碱化土壤交换性钠的测定[S]. 北京:中国标准出版社,1999:1-3 [25] Ministry of Agriculture and Rural Affairs of the People's Republic of China. NY/T 1121.14-2023 Soil testing-part 14: determination of available sulfur in soil [S]. Beijing: Standards Press of China, 2023: 1-13 中华人民共和国农业农村部. NY/T 1121.14—2023 土壤检测 第14部分:土壤有效硫的测定[S]. 北京:中国标准出版社,2023:1-13 [26] Ministry of Agriculture of the People’s Republic of China. NY/T 1121.16-2006 Soil testing-part 16: determination of total water-soluble salt in soil [S]. Beijing: China Standard Press, 2006: 1-4 中华人民共和国农业部. NY/T 1121.16—2006 土壤检测 第16部分:土壤水溶性盐总量的测定[S]. 北京:中国标准出版社,2006:1-4 [27] Ministry of Agriculture of the People’s Republic of China. NY/T 890-2004 Determination of available Zinc, manganese, iron, and copper in soil-diethylenetriaminepentaacetic acid (DTPA) extraction method [S]. Beijing: China Agriculture Press, 2005: 1-8 中华人民共和国农业部. NY/T 890—2004 土壤有效态锌、锰、铁、铜含量的测定 二乙三胺五乙酸(DTPA)浸提法[S]. 北京:中国农业出版社,2005:1-8 [28] Ministry of Agriculture of the People’s Republic of China. NY/T 1121.13-2006 Soil testing-part 13: determination of exchangeable calcium and magnesium in soil [S]. Beijing: China Standard Press, 2006: 1-6 中华人民共和国农业部. NY/T 1121.13—2006 土壤检测 第13部分:土壤交换性钙和镁的测定[S]. 北京:中国标准出版社,2006:1-6 [29] CHEN J,WANG P F,WANG C,et al. Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river[J]. Environmental Microbiology,2020,22(3):832-849 [30] LAI J S,ZOU Y,ZHANG J L,et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package[J]. Methods in Ecology and Evolution,2022,13(4):782-788 [31] LIU S B,ZAMANIAN K,SCHLEUSS P M,et al. Degradation of Tibetan grasslands:consequences for carbon and nutrient cycles[J]. Agriculture,Ecosystems & Environment,2018,252:93-104 [32] QU T B,DU W C,YUAN X,et al. Impacts of grazing intensity and plant community composition on soil bacterial community diversity in a steppe grassland[J]. PLoS One,2016,11(7):e0159680 [33] FIERER N,JACKSON R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(3):626-631 [34] DIMITRIU P A,GRAYSTON S J. Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils[J]. Microbial Ecology,2010,59(3):563-573 [35] BRAUN B,BÖCKELMANN U,GROHMANN E,et al. Bacterial soil communities affected by water-repellency[J]. Geoderma,2010,158(3/4):343-351 [36] GRAYSTON S J,GRIFFITH G S,MAWDSLEY J L,et al. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems[J]. Soil Biology and Biochemistry,2001,33(4/5):533-551 [37] ZHOU X Q,WANG J Z,HAO Y B,et al. Intermediate grazing intensities by sheep increase soil bacterial diversities in an Inner Mongolian steppe[J]. Biology and Fertility of Soils,2010,46(8):817-824 [38] WARDLE D A,BARKER G M,YEATES G W,et al. Introduced browsing mammals in New Zealand natural forests:aboveground and belowground consequences[J]. Ecological Monographs,2001,71(4):587-614 [39] LIU J S,WANG L,WANG D L,et al. Plants can benefit from herbivory:stimulatory effects of sheep saliva on growth of Leymus chinensis[J]. PLoS One,2012,7(1):e29259 [40] AARSSEN L W. Hypotheses for the evolution of apical dominance in plants:implications for the interpretation of overcompensation[J]. Oikos,1995,74(1):149 [41] HUHTA A P,HELLSTRÖM K,RAUTIO P,et al. Grazing tolerance of Gentianella amarella and other monocarpic herbs:why is tolerance highest at low damage levels?[J]. Plant Ecology,2003,166(1):49-61 [42] DIMITRI KITS K,SEDLACEK C J,LEBEDEVA E V,et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle[J]. Nature,2017,549(7671):269-272 [43] ZHOU J Z,DENG Y,LUO F,et al. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2[J]. mBio,2011,2(4):e00122-11 [44] SELBMANN L,EGIDI E,ISOLA D,et al. Biodiversity,evolution and adaptation of fungi in extreme environments[J]. Plant Biosystems-an International Journal Dealing with All Aspects of Plant Biology,2013,147(1):237-246 [45] CLEGG C D. Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils[J]. Applied Soil Ecology,2006, 31(1-2):73-82 [46] LIN Y,HONG M,HAN G D,et al. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe[J]. Agriculture,Ecosystems & Environment,2010,138(3/4):282-292 [47] ZHANG X F,XU S J,LI C M,et al. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan Plateau[J]. Research in Microbiology,2014,165(2):128-139 [48] LAUBER C L,HAMADY M,KNIGHT R,et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology,2009,75(15):5111-5120 [49] ROUSK J,BÅÅTH E,BROOKES P C,et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal,2010,4(10):1340-1351 [50] CERRITOS R,EGUIARTE L E,AVITIA M,et al. Diversity of culturable thermo-resistant aquatic bacteria along an environmental gradient in Cuatro Ciénegas,Coahuila,México[J]. Antonie Van Leeuwenhoek,2011,99(2):303-318 [51] TRIPATHI B M,KIM M,SINGH D,et al. Tropical soil bacterial communities in Malaysia:ph dominates in the equatorial tropics too[J]. Microbial Ecology,2012,64(2):474-484 |
| [1] | JU Xin, WANG Xin-ya, WANG Bing-ying, HAN Guo-dong, WU Qian. Effects of Grazing Intensity on Plant Community Composition and Nutrient Quality of Forage in a Desert Steppe [J]. Acta Agrestia Sinica, 2025, 33(9): 2962-2972. |
| [2] | LONGZHU Duojie, ZHANG Xu-ping, LIU Qiang, WANG Jin, HU Xiao-mei, LA Ben. Relationships Between Plant Diversity and Ecosystem Multifunctionality Along a Water-Salt Gradient in the Gahai Wetland [J]. Acta Agrestia Sinica, 2025, 33(7): 2262-2276. |
| [3] | ZHENG Min-na, KANG Jia-hui, GONG Rui-jie, CHEN Yan-ni, HAN Zhi-shun, LIANG Xiu-zhi. Effects of Various Alfalfa-Crop(Forage)Rotation Patterns on Bacterial Community Composition and Ecological Function Prediction [J]. Acta Agrestia Sinica, 2025, 33(5): 1387-1397. |
| [4] | JI Shuang, WU Hao-kun, ZHANG Shao-xiong, XIE Hui-chun. Study on the Variation of Bacterial Communities in Alpine Meadow Soils along an Altitudinal Gradient and Its Influencing Factors [J]. Acta Agrestia Sinica, 2025, 33(4): 1085-1094. |
| [5] | AN Hai-tao, SUN Cai-cai, DONG Quan-min, YANG Xiao-xia, LIU Wen-ting, WANG Xiao-li, ZHAO Xin-quan. Characteristics of Soil Particle Size Fractals under Different Grazing Regimes in Alpine Meadows of the Tibetan Plateau [J]. Acta Agrestia Sinica, 2025, 33(4): 1106-1113. |
| [6] | HUO Qian-qian, SONG Yang-yang, DUAN Zhen-yu, HE Hai-xiu, CHEN Yan-bin, XI Lin-qiao. Effects of Reseeding on Soil Physicochemical Properties and Microbial Community Structure in Yili Natural Mowing Land [J]. Acta Agrestia Sinica, 2025, 33(2): 429-439. |
| [7] | CUI Le, LI Zhi-guo, LYU Shi-jie, DUAN Lei-yu, WANG Xin-yu, SUN Xue-yan. Effects of Grazing Intensity on Soil Bacterial Communities Composition and Diversity in Different Microhabitats of Desert Steppe [J]. Acta Agrestia Sinica, 2025, 33(11): 3571-3580. |
| [8] | WANG Shu-juan, ZHANG Rui-jie, XIE Gazangzhuoma, ZHANG Fu, XIE Ai-ping, MA Rui. Characteristics of Soil Carbon and Nitrogen Storage and Bacterial Community Structure in Different Age Classes of Artificial Haloxylon ammodendron Forests [J]. Acta Agrestia Sinica, 2025, 33(10): 3255-3262. |
| [9] | CAO Wei, CHI Xiao-xue, WANG Chang, WEI Hong, LU Hai-tao, ZHONG Shang-zhi. Effects of Different Improvement Measures on Plant Community Characteristics and Soil Nutrients of Degraded Meadow Grassland [J]. Acta Agrestia Sinica, 2025, 33(10): 3272-3279. |
| [10] | LIU Hai-qiang, LI Shi-xiong, ZHAO Wen, LIU Jing-jing, XU Hai-feng, YIN Ya-li. Effects of No-tillage Reseeding on Community Characteristics of Vegetation and Microorganisms in Moderately Degraded Alpine Meadows [J]. Acta Agrestia Sinica, 2025, 33(10): 3280-3290. |
| [11] | SHI Yu-xin, ZHOU Ji-qiong, SUN Yu-hao, LUO Hong-bing, CHEN Xiao-jun, LI Juan, LAN Jun-tai, BAI Yan-bo, YU Peng-cheng, CHEN Ting, CEHN Xiao-bing. The variation Trends of Plant and Soil Fungi Communities in Alpine Grassland along the Sichuan-Tibet Railway [J]. Acta Agrestia Sinica, 2024, 32(9): 2707-2717. |
| [12] | XIONG Zhao-yang, ZHANG Qing-song, LI Jia-xiu, DU Jing, CAO Ying, ZHANG Xue, WANG Shuang, DU Zi-yin. Impacts of Grazing Livestock Dung and Urine Returning on N2O Emission from Seasonal Freeze-thaw Alpine Steppe [J]. Acta Agrestia Sinica, 2024, 32(6): 1843-1855. |
| [13] | WANG Zi-han, LYU Shi-jie, WANG Zhong-wu, WU Lan-ao-deng, LIU Hong-mei, MA Sheng-yun, LI Zhi-guo, HAN Guo-dong. The Relationship between Species Diversity and Aboveground Standing Crop of Plant Community in the Desert Steppe [J]. Acta Agrestia Sinica, 2024, 32(6): 1856-1863. |
| [14] | AN Hai-tao, SUN Cai-cai, DONG Quan-min, YANG Xiao-xia, ZHANG Chun-hui, ZHAO Xin-quan. Meta-analysis of Soil Microbial Biomass Response to Grazing Intensity in the Qinghai-Tibetan Plateau [J]. Acta Agrestia Sinica, 2024, 32(6): 1913-1922. |
| [15] | GUO Qian, WANG Bo, FAN Yong-ming, LU Xue-jiao, QIN Bei-ling, WEN Zhong-ming, LI Wei. Characteristics and Influencing Factors of Soil Bacterial Communities in Subshrub Encroachment Grasslands [J]. Acta Agrestia Sinica, 2024, 32(5): 1410-1419. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||