与蝉花有关的虫草菌生物多样性的研究II:重要药用真菌蝉花有性型的发现及命名

李增智,栾丰刚,HYWEL-JONES NigelL,张胜利,陈名君,黄勃,孙长胜,陈祝安,李春如,谭悠久,董建飞

菌物学报 ›› 2021, Vol. 40 ›› Issue (1) : 95-107.

PDF(622 KB)
中文  |  English
PDF(622 KB)
菌物学报 ›› 2021, Vol. 40 ›› Issue (1) : 95-107. DOI: 10.13346/j.mycosystema.200119 CSTR: 32115.14.j.mycosystema.200119
研究论文

与蝉花有关的虫草菌生物多样性的研究II:重要药用真菌蝉花有性型的发现及命名

作者信息 +

Biodiversity of cordycipitoid fungi associated with Isaria cicadae Miquel II: Teleomorph discovery and nomenclature of chanhua, an important medicinal fungus in China

Author information +
文章历史 +

摘要

我国重要药用真菌蝉花的分类地位和学名在国内外长期混乱,因其有性型未被发现,长期以来误作为根据巴西标本命名的Isaria (Paecilomyces) cicadae。作者最近在井冈山发现了其有性型,研究了标本及分离物的形态特征及多位点系统发育特征,并与GenBank中相关种类的序列进行了对比,证明I. cicadae是物种复合群,确定蝉花是虫草科虫草属中的新种,使用传统药用真菌蝉花的古老名称将其命名为Cordyceps chanhua。蝉花子座淡橙色到淡桔黄色,子囊壳半埋生,475-602×222-319μm,子囊孢子246-360×1.5-1.8μm,分孢子圆筒形,6.4-13.8×2.1-3.1μm。孢梗束淡黄色至淡黄褐色,分生孢子长椭圆形或圆筒形,3.5-10.5×1.5-4.5μm。

Abstract

The systematic position and scientific name of “chanhua”, an important cordycipitoid mushroom has long been chaotic. Because its teleomorph was unknown, it has long been regarded as Isaria (Paecilomyces) cicadae named based on a Brazilian specimen. The teleomorph of this taxon was recently discovered from Mt. Jinggangshan, Eastern China. In the present paper, the teleomorph and anamorph of the species were studied morphologically and multigene-phylogenetically, the hypothesis that I. cicadae was a species complex was demonstrated, and “chanhua” was verified as a new species in the genus Cordyceps of Cordicipitaceae and then Cordyceps chanhua was proposed using the ancient Chinese name “chanhua” as its epithet. Stromata of C. chanhua are light orange to light saffron, ovoid, 476-602×222-319μm; ascospores are filiform, 246-360×1.5-1.8μm and part spores are 6.4-13.8×2.1-3.1μm. Conidia are long ellipsoid or cylindrical, 3.5-10.5×1.5-4.5μm.

关键词

蝉花 / 有性型 / 蝉棒束孢 / 复合种 / 系统发育

Key words

Cordyceps chanhua / teleomorph / Isaria cicadae / species complex / phylogeny

引用本文

导出引用
李增智, 栾丰刚, HYWEL-JONES NigelL, 张胜利, 陈名君, 黄勃, 孙长胜, 陈祝安, 李春如, 谭悠久, 董建飞. 与蝉花有关的虫草菌生物多样性的研究II:重要药用真菌蝉花有性型的发现及命名[J]. 菌物学报, 2021, 40(1): 95-107 https://doi.org/10.13346/j.mycosystema.200119
LI Zeng-Zhi, LUAN Feng-Gang, HYWEL-JONES Nigel L, ZHANG Sheng-Li, CHEN Ming-Jun, HUANG Bo, SUN Chang-Sheng, CHEN Zhu-An, LI Chun-Ru, TAN You-Jiu, DONG Jian-Fei. Biodiversity of cordycipitoid fungi associated with Isaria cicadae Miquel II: Teleomorph discovery and nomenclature of chanhua, an important medicinal fungus in China[J]. Mycosystema, 2021, 40(1): 95-107 https://doi.org/10.13346/j.mycosystema.200119
苹果树腐烂病是由黑腐皮壳属 Valsa spp.引起的一种枝干病害,普遍发生于我国各个苹果树种植区(高克祥和刘晓光 1995;陈策 2009)。近年来,我国苹果树腐烂病发生日趋严重,在陕西(王磊等 2005;李正鹏等 2013)、辽宁(吴玉星等 2010)、甘肃(牛军强等 2011)、山东(王彩霞等2012)、山西(曹克强等 2009;张润祥等 2011)、河南(周增强等 2015)、云南(桂腾茸等 2014)等果区均有不同程度的发生。2009年山西省苹果树腐烂病发生面积为17万公顷,2010年为20万公顷(张润祥等 2011)。2014-2015年,本课题组调查发现在山西省苹果主栽区(运城、临汾)腐烂病平均病株率高达74.5%。
Valsa spp.可以侵染多种植物(苹果、海棠、梨、桃、沙果、樱桃、梅、梨、杨树、柳树、桑树等)导致发生腐烂病(陈策 2009;孙祥瑞等 2010),来源于不同的寄主及不同培养条件下Valsa spp.的菌落特征会在一定范围内变化(Wang et al. 2011)。因此,同种异名的情况时有发生,如 V. ceratosperma (Tode:Fr.) Maire的分类始终存在争议(Saito et al. 1972;Lee et al. 2006;Suzaki 2008;Wang et al. 2014)。随着分子生物学技术的发展,特别是应用rDNA-ITS已准确鉴定了由Valsa spp.引起的多种果树腐烂病菌(Adams et al. 2002,2005,2006)。国外学者通过同工酶谱、rDNA-ITS酶切图谱及系统发育学结合形态学等手段将 V. ceratosperma (Tode:Fr.) Maire划分为 3个不同的种V. fabianaeV. ceratosperma sensu stricto和 V. ceratosperma sensu Kobayashi(Lee et al. 2006;Adams et al. 2005;Suzaki 2008)。Wang et al.(2014)依据菌落特征、致病性及序列的差异将V. mali var. maliV. mali var. pyri重新命名为苹果黑腐皮壳菌V. mali和梨黑腐皮壳菌V. pyri。目前,我国的苹果树腐烂病菌由V. maliV. pyri、V. malicolaV. persoonii 4个致病种组成,V. mali是我国苹果树腐烂病的优势种(Wang et al. 2011,2014),然而,由于其取样点及数量的局限性,并未涵盖山西省各个苹果树种植区。
山西省是我国苹果重要的生产基地之一,苹果树主要分布于黄河故道和黄土高原地区,有其独特的种植结构和地理环境(Bills & Polishook 1991;农业部种植管理业司 2007)。但是,山西省苹果树腐烂病菌的种群结构并未明确,亟需系统研究山西省苹果树腐烂病菌,为腐烂病的防治提供科学依据。
本研究采集并分离了来自山西省8个苹果树种植区的腐烂病标本,通过形态特征观察和利用2个DNA片段(ITS和EF1α)构建系统发育树进行研究,进而明确山西省苹果树腐烂病菌的种群结构。

1 材料与方法

1.1 病原菌采集与分离

本实验供试标本主要采集自山西省运城、临汾、晋中、忻州、朔州、晋城、太原、长治等8个苹果树种植区(表1图3B)。采用组织分离法分离菌株(王玉春等 2015),进一步纯化得到单孢分离菌株(Wang et al. 2011)、4℃保存菌种。
表1 供试腐烂病菌菌株编号及来源

Table 1 Information of Valsa species from Shanxi Province


Species
采集地
Origin
菌株
Strain
菌株数
Number of strains
相对频率
Relative frequency (%)
V. mali 运城 Yuncheng YC0136, YC102, YC095, YC90, YC086, YC083, YC077 7 46.7
临汾 Linfen LF097, LF095, LF092, LF043, LF015 5 41.7
晋中 Jinzhong JZ159, JZ149, JZ144, JZ146, JZ135, JZ064
JZ069, JZ065, JZ060, JZ049
10 66.7
忻州 Xinzhou -- 0 0
朔州 Shuozhou -- 0 0
晋城 Jincheng JC206, JC202, JC199 3 33.3
太原 Taiyuan TY133, TY135, TY129, TY121 4 44.4
长治 Changzhi CZ190, CZ179, CZ165 3 37.5
V. pyri 运城 Yuncheng YC050, YC049, YC047, YC046, YC45
YC071, YC044, YC048
8 53.3
临汾 Linfen LF039, LF037, LF035, LF031, LF030, LF027, LF023 7 58.3
晋中 Jinzhong JZ134, JZ128, JZ125, JZ120, JZ115 5 33.3
忻州 Xinzhou XZ178, XZ175, XZ173, XZ074, XZ073 5 100
朔州 Shuozhou SZ212, SZ211, SZ210, SZ209, SZ207 5 100
晋城 Jincheng JC209, JC208, JC201, JC185, JC183, JC180 6 66.7
太原 Taiyuan TY132, TY130, TY120, TY118, TY117 5 55.6
长治 Changzhi CZ200, CZ197, CZ195, CZ189, CZ186 5 62.5
Note: There are 4 strains (JZ069, JZ065, JZ060, JZ049) from Taigu county of Jinzhong city and all of them are Valsa mali; there are 3 strains (YC071, YC044, YC048) from Yanhu district of Yuncheng city and all of them are V. pyri.
注:在晋中市太谷县分离出4株菌(JZ069、JZ065、JZ060、JZ049),全部为Valsa mali;在运城市盐湖区分离分离出3株菌(YC071、YC044、YC048),全部为V. pyri.

1.2 形态学观察

在PDA平板培养3d的菌株,取菌饼(直径5mm)接种于新PDA平板中央培养,重复3 次。22℃、12h光照/12h黑暗培养2d后测量菌落直径并记录菌落特征(Li et al. 2011;Wang et al. 2011)。

1.3 DNA提取及PCR扩增

依据参考文献(臧睿等 2007;臧睿 2012;Wang et al. 2011,2014)对菌株形态学的研究结果选择代表性菌株,收集培养5d后的菌丝,使用柱式抽提试剂盒[(生工生物工程(上海)股份有限公司)]提取DNA,PCR扩增ITS和EF1α 2个DNA片段。应用引物ITS1-F(Gardes & Bruns 1993)和ITS4(White et al. 1990)扩增ITS序列,扩增条件参照Wang et al.(2011)的方法进行;应用引物EF1-728F和EF1-986R(Carbone & Kohn 1999)扩增EF1α序列,扩增条件参照Wang et al.(2014)的方法进行。扩增产物纯化后送生工生物工程(上海)股份有限公司测序。

1.4 系统发育分析

在GenBank中下载所需的参考序列(表2)。使用ClustalX 2.1软件对基因序列进行比对分析(Thompson et al. 1997)。使用PAPU 4.0软件以邻接法(neighbor-Joining,NJ)构建系统发育树(Swofford 2002)。
表2 23株山西省苹果树腐烂病菌的rDNA-ITS和EF1α的GenBank登入号

Table 2 Isolates and GenBank accession numbers of 23 isolates of Valsa species from Shanxi Province

Species Origin Isolates GenBank accession numbers of Valsa species
ITS EF1α
V. pyri 运城 Yuncheng YC047 KX196239 KX273798
YC046 KX196257 KX273802
临汾 Linfen LF035 KX196253 KX273805
晋中 Jinzhong JZ120 KX196251 KX273799
JZ125 KX196247 KX273820
忻州 Xinzhou XZ073 KX196238 KX273809
XZ175 KX196245 KX273807
朔州 Shuozhou SZ211 KX196237 KX273808
SZ210 KX196258 KX273803
晋城 Jincheng JC209 KX196248 KX273800
JC201 KX196246 KX273804
太原 Taiyuan TY130 KX196243 KX273819
TY118 KX196240 KX273801
TY132 KX196242 KX273810
长治 Changzhi CZ195 KX196259 KX273806
V. mali 运城 Yuncheng YC102 KX196256 KX273812
临汾 Linfen LF095 KX196249 KX273816
晋中 Jinzhong JZ159 KX196255 KX273817
JZ144 KX196241 KX273811
JZ064 KX196244 KX273814
长治 Changzhi JC206 KX196254 KX273813
太原 Taiyuan TY121 KX196252 KX273815
长治 Changzhi CZ190 KX196250 KX273818
V. pyri Vp134 JN662366 JQ900325
Vp014 JN673554 JQ900327
V. mali Vm 008 JN412599 JQ900314
Vm 024 GU174588 JQ900313
Vm 142 JN792572 JQ900309
Vm 143 JN792571 JQ900310
V. malicola Vmlicola 001 JN545839 JQ900336
Vmlicola 136 GU174579 JQ900335
Vmlicola 137 GU174578 JQ900334
V. leucostoma Vleucostoma 32W JN584644 JQ900339
Note: Sequences for Vp014, Vp134, Vm008, Vm024, Vm142, Vm143, Vmalicola 001, Vmalicola 136, Vmalicola 137 and Vleucostoma 32W were obtained from GenBank.

1.5 数据分析

采用相对频率表示苹果树腐烂病菌在各个种植区的分布偏好性(刘宏玉等2015)。应用 SPSS 19.0软件将每个地区Valsa spp.的相对频率以欧式距离法进行聚类分析(王术荣等 2016)。根据聚类分析结果,以适当大小作为分割点,将山西省8个苹果树种植区腐烂病菌的种群结构划分为不同类型。

2 结果与分析

2.1 病原菌菌落形态学特征

以菌株编号为JC206、JZ144、JZ159、CZ190、JZ120、TY130、SZ211和YC046的8个株菌为代表,观察苹果树腐烂病菌在PDA培养基上的菌落形态。基于苹果树腐烂病菌在PDA培养基上菌落的质地、颜色、生长速率及分生分生孢子器大小分为2类。
第一类菌株的菌落正面颜色分灰白色(图1A,C,D)和黄褐色2个类型(图1B),菌落背面淡黄色、黄褐色,菌丝绒毛状,部分菌株中央菌丝稀疏(图1 A,B,C,D)。灰白色菌株在PDA培养基上的平均生长速率为2.03cm/d,4d后产生分生孢子器(图1C,D)。黄褐色菌株在PDA培养基上的平均生长速率为3.20cm/d,培养期内不产生分生孢子器(图1B)。
图1 山西省苹果树腐烂病菌菌落形态特征 A:JC206;B:JZ144;C:JZ159;D:CZ190;E:JZ120;F:TY130;G:SZ211;H:YC046.

Fig. 1 Morphological characteristics of Valsa species colony from Malus pumila in Shanxi Province. A: JC206; B: JZ144; C: JZ159; D: CZ190; E: JZ120; F: TY130; G: SZ211; H: YC046.

Full size|PPT slide

第二类菌株的菌落呈白色、乳白色,菌丝呈放射状、致密,菌落背面为淡黄褐色(图1E,F,G,H)。在PDA培养基上平均生长速率为3.69cm/d;3d后菌落呈乳白色,产生分生孢子器,分生孢子器附着白色气生菌丝(图1E,F,G,H)。

2.2 系统发育分析

通过分离采自山西省8个苹果树种植区的腐烂病树皮标本,共获得78株菌(表1)。通过菌株形态特征及地区差异筛选出23株菌(同一地区、形态特征相同的菌株图1中未显示)扩增ITS和EF1α基因序列,将得到的序列提交至GenBank (表2)。
利用2个基因(ITS和EF1α),以 V. leucostoma(Vleucostoma 32w)为外类群构建系统发育树。筛选的23株菌聚类为2个分支(图1),表明山西省苹果树腐烂病菌归属为V. mali(苹果黑腐皮壳菌)和V. pyri(梨黑腐皮壳菌)2个类群(图2)。其中,15株菌(另31株菌的分布见表1)与V. pyri (Vp014和Vp134)以100%自展支持率聚为同一个分支(图2),分布于山西省各个苹果树种植区(表1)。其余8株菌(另24株菌的分布见表1)与V. mali(Vm008、Vm024、Vm142、Vm143)以100%自展支持率聚为同一个分支(图2),分布于山西省运城、临汾、晋中、晋城、太原、长治等6个果区(表1)。
图2 苹果树腐烂病菌系统发育树

Fig. 2 Phylogenetic tree of Valsa species isolated from Malus pumila in Shanxi Province.

Full size|PPT slide

2.3 山西省各个苹果树种植区腐烂病菌的组成与分布

山西省苹果树腐烂病菌归属为V. maliV. pyri 2个致病种(图2),其中V. pyri分布于山西省8个苹果树种植区,占菌株总数的58.97% (图3A)。在山西省晋北果区(忻州、朔州)、运城盐湖区3个苹果树种植区,V. pyri的相对频率为100%(表1图3A);在晋中市太谷县果区没有分离到V. pyri表1);在运城、临汾、晋中、晋城、太原、长治6个苹果树种植区,V. pyri的相对频率分别为53.33%、58.33%、33.33%、66.67%、55.56%、63.00%(图3A)。V. mali分布于运城、临汾、晋中、晋城、太原、长治6个果区,占菌株总数的41.03% (图3A);在晋北果区(忻州、朔州)果区没有分离到V. mali表1图3A)。
图3 山西省各个苹果树种植区腐烂病菌的组成与分布 A:山西省各个苹果树种植区腐烂病菌的百分比;B:山西省苹果树和梨树种植面积.

Fig. 3 Distribution and species composition of Valsa spp. from apple planting areas in Shanxi Province. A: Composition of Valsa species from different areas; B: Apple and pear tree planting areas in Shanxi Province. : Pear; : Apple.

Full size|PPT slide

2.4 山西省各个苹果树种植区腐烂病菌种群结构聚类分析

以山西省8个苹果树种植区腐烂病菌的相对频率进行聚类分析。结果表明以欧式距离9作为聚类分割点,将8个苹果树种植区腐烂病菌种群结构分为3个类型(图4)。第Ⅰ类包含忻州和朔州2个苹果树种植区(苹果树种植面积与梨树种植面积的比例为1.12:1.94,图3B),在这2个种植区V. pyri的相对频率为100%;V. pyri是为害忻州和朔州2个苹果树种植区的致病菌(图4)。第Ⅱ类包含晋城、长治、临汾、太原、运城5个苹果树种植区,V. pyri的相对频率介于53%-67%之间;V. pyri是这5个苹果树种植区的优势种(图4)。第Ⅲ类包含晋中1个苹果树种植区(苹果树种植面积与梨树种植面积的比例为3.85:2.31,图3B);V. pyri的相对频率为33.33%;V. mali为晋中苹果树种植区的优势种(图4)。
图4 山西省8个苹果树种植区腐烂病菌相对频率的聚类分析图

Fig. 4 Relative frequency of Valsa species clustering tree of 8 apple planting areas in Shanxi Province.

Full size|PPT slide

3 结论

苹果树腐烂病是生产中为害严重的枝干病害。了解腐烂病菌群体的组成和分布状况,有助于为针对性的防治提供科学依据。我国苹果树腐烂病菌由 Valsa maliV. pyri、V. malicolaV. persoonii 4个致病种组成,其中V. mali是我国苹果树腐烂病的主要致病种(Wang et al. 2011,2014)。臧睿(2012)研究我国苹果树腐烂病菌的组成时发现山西省运城地区有5株V. mali和1株V. pyri。本研究发现山西省苹果树腐烂病的致病菌归属为苹果黑腐皮壳菌V. mali和梨黑腐皮壳菌V. pyri,其中V. pyri所占比例较大,相对频率为58.97%;但并未分离到V. malicolaV. persoonii,这与国内外的报道明显不同(Wang et al. 2011,2014;臧睿 2012),可能由于取样地点的不同和种植结构的差异等原因造成。
山西省地处黄土高原,有其独特的地理环境及种植结构(Bills & Polishook 1991;农业部种植管理业司 2007)。本研究发现山西省苹果树腐烂病菌群体与国内其他省份腐烂病菌群体存在着较大的差异(Wang et al. 2011,2014;臧睿 2012)。病原菌的群体结构与其寄主的种植结构和栽培制度密切相关,在不同的寄主选择压力下其群体适应性发生相对应的变化(Wang et al. 2011,2014)。2015年山西省农业厅统计,山西省苹果树栽培面积为33.40万公顷、梨树栽培面积为9.51万公顷,各个苹果树种植区均分布有一定面积的梨树(图3B)。本研究发现在忻州朔州地区苹果树种植面积与梨树种植面积的比例为1.12:1.94(图3B);且当地普遍存在苹果树和梨树混栽的种植模式,V. pyri为晋北地区苹果树腐烂病致病菌、相对频率为100%。国内外学者研究表明V. pyri即可以侵染梨树又可以侵染苹果树,但是V. mali对苹果树的致病性要强于V. pyriWang et al. 2011,2014;臧睿 2012;臧睿等2007)。由此可见,山西省果区独特的种植结构及V. maliV. pyri的2个种致病力的差异是造成山西省苹果树腐烂病菌群体与国内其他省份腐烂病菌群体存在差异的原因之一。

参考文献

[1]
Cai BH, 1957. Insect Classification. Part A. Financial Economics Press, Beijing. 64 (in Chinese)
[2]
Castlebury LA, Rossman AY, Sung GH, Hyten A, Spatafora JW, 2004. Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research, 108:864-872
Stachybotrys chartarum is an asexually reproducing fungus commonly isolated from soil and litter that is also known to occur in indoor environments and is implicated as the cause of serious illness and even death in humans. Despite its economic importance, higher level phylogenetic relationships of Stachybotrys have not been determined nor has a sexual state for S. chartarum been reported. DNA sequences from four nuclear and one mitochondrial gene were analyzed to determine the ordinal and familial placement of Stachybotrys within the Euascomycota. These data reveal that species of Stachybotrys including S. chartarum, S. albipes, for which the sexual state Melanopsamma pomiformis is reported, species of Myrothecium, and two other tropical hypocrealean species form a previously unknown monophyletic lineage within the Hypocreales. These results suggest that Stachybotrys and Myrothecium are closely related and share characteristics with other hypocrealean fungi. In addition, S. chartarum may have a sexual state in nature that consists of small, black, fleshy perithecia similar to Melanopsamma.
[3]
Cunnighum GH, 1921. The Genus Cordyceps in New Zealand. Transactions and Proceedings of the Royal Society of New Zealand, 53:372-382
[4]
Dai YD, Yu H, Zeng WB, Yang JY, He L, 2016. Multilocus phylogenetic analyses of the genus Isaria (Ascomycota, Cordycipitaceae). Mycosystema, 35(2):147-160 (in Chinese)
[5]
Edgar RC, 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5):1792-1797
[6]
Kepler RM, Luangsa-ard JJ, Hywel-Jones NL, Quandt AA, Sung G-H, Rehner SA, Aime MC, Henke TW, Sanjuan T, Zare R, Chen MJ, Li ZZ, Rossman AY, Spatafora JW, Shrestha B, 2017. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus, 8(2):335-353
The ending of dual nomenclatural systems for pleomorphic fungi in 2011 requires the reconciliation of competing names, ideally linked through culture based or molecular methods. The phylogenetic systematics of Hypocreales and its many genera have received extensive study in the last two decades, however resolution of competing names in Cordycipitaceae has not yet been addressed. Here we present a molecular phylogenetic investigation of Cordycipitaceae that enables identification of competing names in this family, and provides the basis upon which these names can be maintained or suppressed. The taxonomy presented here seeks to harmonize competing names by principles of priority, recognition of monophyletic groups, and the practical usage of affected taxa. In total, we propose maintaining nine generic names, Akanthomyces, Ascopolyporus, Beauveria, Cordyceps, Engyodontium, Gibellula, Hyperdermium, Parengyodontium, and Simplicillium and the rejection of eight generic names, Evlachovaea, Granulomanus, Isaria, Lecanicillium, Microhilum, Phytocordyceps, Synsterigmatocystis, and Torrubiella. Two new generic names, Hevansia and Blackwellomyces, and a new species, Beauveria blattidicola, are described. New combinations are also proposed in the genera Akanthomyces, Beauveria, Blackwellomyces, and Hevansia.
[7]
Kobayasi Y, 1939. On the genus Cordyceps and its allies on Cicadidae from Japan. Bulletin of the Biogeographical Society of Japan, 9(8):161-169
[8]
Li CR, Hywel-Jones N, Cao YP, Nam SH, Li ZZ, 2018. Tolypocladium dujiaolongae sp. nov. and its allies. Mycotaxon, 133:229-241
[9]
Li ZZ, Chen ZA, Chen YP, 2014. Cicada flower, a national cordycipitoid treasure. Hefei University of Technology Press, Hefei. 276 (in Chinese)
[10]
Li ZZ, Hywel-Jones NL, Luan FG, Zhang SL, Sun CS, Chen ZA, Li CR, Tan YJ, Dong JF, 2020. Biodiversity of cordycipitoid fungi associated with Isaria cicadae Miquel, I. Nomenclatural literature study of chanhua, an important Chinese medicinal cordycipitoid mushroom recorded 1 600 years ago. Mycosystema, 39(12):2191-2201 (in Chinese)
[11]
Liang ZQ, 2007. Flora fungorum sinicorum. Vol. 32. Cordyceps. Science Press, Beijing. 77-80(in Chinese)
[12]
Liu AY, 2012. Study and application of Isaria Cicadae resource in China. Guizhou Science & Technology Press, Guiyang. 57-59(in Chinese)
[13]
Liu AY, Zou X, Chen B, 2011. A new species of Cordyceps, the telemorph of Isaria cicadae Miq. China Agricultural Journal (Academic ed), 11:10-14 (in Chinese)
[14]
Liu B, 1974. Chinese Medicinal Mushrooms. People’s Medical Press, Taiyuan. 14-15(in Chinese)
[15]
Liu SH, Lu JP, Zhu RL, Dai FM, 2005. A rapid and simple extraction method for plant pathogenic fungi. Acta Phytopathologica Sinica, 35(4):362-365 (in Chinese)
[16]
Luangsa-ard JJ, Hywel-Jones NL, Manoch L, Samson RA, 2005. On the relationships of Paecilomyces sect. Isarioidea species. Mycological Research, 109(5):581-589
[17]
Massee G, 1895. A Revision of the genus Cordyceps. Annals of Botany, 9(33):1-42
[18]
Minh BQ, Hahn MW, Lanfear R, 2020. New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution, 37(9):2727-2733
We implement two measures for quantifying genealogical concordance in phylogenomic data sets: the gene concordance factor (gCF) and the novel site concordance factor (sCF). For every branch of a reference tree, gCF is defined as the percentage of
[19]
Miquel FAW, 1838. Sur une Novelle d’Isaria, du Brésil. Bulletin des Sciences Physiques et Naturelles Néerlande, 1838:86
[20]
Mongkolsamrita S, Noisripooma W, Thanakitpipattanaa D, Wutikhunb T, Spataforac JW, Luangsa-ard J, 2018. Disentangling cryptic species with isaria-like morphs in Cordycipitaceae. Mycologia, 110(1):230-257
A new genus and eight new species, all with isaria-like phialides, are described in Cordycipitaceae from Thailand. The new genus, Samsoniella, is segregated from Akanthomyces based on morphological and molecular evidence. Samsoniella differs from Akanthomyces in producing orange cylindrical to clavate stromata with superficial perithecia and orange conidiophores with isaria-like phialides and white to cream conidia. A new combination for CBS 240.32, originally identified as Paecilomyces farinosus (Isaria farinosa), and CBS 262.58, originally identified as Penicillium alboaurantium, respectively, is made in Samsoniella. Two new species, Samsoniella aurantia and S. inthanonensis, are described from lepidopteran larvae. Two new species of Cordyceps, C. blackwelliae and C. lepidopterorum, were also found on coleopteran and lepidopteran larvae. Both produce isaria-like morphs with globose phialides and attenuated long necks and white mycelium in culture. The authors established a sexual-asexual link for Cordyceps javanica (= Isaria javanica) on lepidopteran larvae. Four new species, Akanthomyces kanyawimiae, A. sulphureus, A. thailandicus, and A. waltergamsii, were pathogenic on spiders, with some strains of A. kanyawimiae also found on unidentified insect larvae. These four species of Akanthomyces occur on the underside of leaves and produce white to cream white powdery conidia, whereas S. aurantia and S. inthanonensis were found in leaf litter and produce bright orange stromata and synnemata with white conidia. Another new combination, Akanthomyces ryukyuensis, is proposed. Phylogenetic analyses based on a combined data set comprising the nuc rDNA region encompassing the internal transcribed spacers 1 and 2 along with the 5.8S rDNA (ITS), nuc 28S rDNA (28S), partial sequences of translation elongation factor 1-alpha gene (TEF1), and the genes for RNA polymerase II largest (RPB1) and second-largest (RPB2) subunits strongly support the delimitation of these new species of Cordyceps, Akanthomyces, and in a new genus Samsoniella in Cordycipitaceae.
[21]
Rehner SA, Buckley E, 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97(1):84-98
Beauveria is a globally distributed genus of soil-borne entomopathogenic hyphomycetes of interest as a model system for the study of entomopathogenesis and the biological control of pest insects. Species recognition in Beauveria is difficult due to a lack of taxonomically informative morphology. This has impeded assessment of species diversity in this genus and investigation of their natural history. A gene-genealogical approach was used to investigate molecular phylogenetic diversity of Beauveria and several presumptively related Cordyceps species. Analyses were based on nuclear ribosomal internal transcribed spacer (ITS) and elongation factor 1-alpha (EF1-alpha) sequences for 86 exemplar isolates from diverse geographic origins, habitats and insect hosts. Phylogenetic trees were inferred using maximum parsimony and Bayesian likelihood methods. Six well supported clades within Beauveria, provisionally designated A-F, were resolved in the EF1-alpha and combined gene phylogenies. Beauveria bassiana, a ubiquitous species that is characterized morphologically by globose to subglobose conidia, was determined to be non-monophyletic and consists of two unrelated lineages, clades A and C. Clade A is globally distributed and includes the Asian teleomorph Cordyceps staphylinidaecola and its probable synonym C. bassiana. All isolates contained in Clade C are anamorphic and originate from Europe and North America. Clade B includes isolates of B. brongniartii, a Eurasian species complex characterized by ellipsoidal conidia. Clade D includes B. caledonica and B. vermiconia, which produce cylindrical and comma-shaped conidia, respectively. Clade E, from Asia, includes Beauveria anamorphs and a Cordyceps teleomorph that both produce ellipsoidal conidia. Clade F, the basal branch in the Beauveria phylogeny includes the South American species B. amorpha, which produces cylindrical conidia. Lineage diversity detected within clades A, B and C suggests that prevailing morphological species concepts underestimate species diversity within these groups. Continental endemism of lineages in B. bassiana s.l. (clades A and C) indicates that isolation by distance has been an important factor in the evolutionary diversification of these clades. Permutation tests indicate that host association is essentially random in both B. bassiana s.l. clades A and C, supporting past assumptions that this species is not host specific. In contrast, isolates in clades B and D occurred primarily on coleopteran hosts, although sampling in these clades was insufficient to assess host affliation at lower taxonomic ranks. The phylogenetic placement of Cordyceps staphylinidaecola/bassiana, and C. scarabaeicola within Beauveria corroborates prior reports of these anamorph-teleomorph connections. These results establish a phylogenetic framework for further taxonomic, phylogenetic and comparative biological investigations of Beauveria and their corresponding Cordyceps teleomorphs.
[22]
Rehner SA, Minnis AM, Sung GH, Luangsa-ard JJ, Devotto L, Humber RA, 2011. Entomopathogenic fungi in Portuguese vineyards soils: suggesting a ‘Galleria-Tenebrio-bait method’ as bait-insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). Mycologia, 103(5):1055-1073
Beauveria is a cosmopolitan anamorphic genus of arthropod pathogens that includes the agronomically important species, B. bassiana and B. brongniartii, which are used as mycoinsecticides for the biological control of pest insects. Recent phylogenetic evidence demonstrates that Beauveria is monophyletic within the Cordycipitaceae (Hypocreales), and both B. bassiana and B. brongniartii have been linked developmentally and phylogenetically to Cordyceps species. Despite recent interest in the genetic diversity and molecular ecology of Beauveria, particularly as it relates to their role as pathogens of insects in natural and agricultural environments, the genus has not received critical taxonomic review for several decades. A multilocus phylogeny of Beauveria based on partial sequences of RPB1, RPB2, TEF and the nuclear intergenic region, Bloc, is presented and used to assess diversity within the genus and to evaluate species concepts and their taxonomic status. B. bassiana and B. brongniartii, both which represent species complexes and which heretofore have lacked type specimens, are redescribed and types are proposed. In addition six new species are described including B. varroae and B. kipukae, which form a biphyletic, morphologically cryptic sister lineage to B. bassiana, B. pseudobassiana, which also is morphologically similar to but phylogenetically distant from B. bassiana, B. asiatica and B. australis, which are sister lineages to B. brongniartii, and B. sungii, an Asian species that is linked to an undetermined species of Cordyceps. The combination B. amorpha is validly published and an epitype is designated.
[23]
Rojas EI, Rehner S, Samuels GJ, van Bael SA, Herre EA, Canon P, Chen R, Pang JF, Wang RW, Zhang YP, Peng YQ, 2010. Collectotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panama: multilocus phylogebies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia, 102:1318-1338
Colletotrichum interacts with numerous plant species overtly as symptomatic pathogens and cryptically as asymptomatic endophytes. It is not known whether these contrasting ecological modes are optional strategies expressed by individual Colletotrichum species or whether a species' ecology is explicitly pathogenic or endophytic. We explored this question by inferring relationships among 77 C. gloeosporioides s.l. strains isolated from asymptomatic leaves and from anthracnose lesions on leaves and fruits of Theobroma cacao (cacao) and other plants from Panama. ITS and 5'-tef1 were used to assess diversity and to delineate operational taxonomic units for multilocus phylogenetic analysis. The ITS and 5'-tef1 screens concordantly resolved four strongly supported lineages, clades A-D: Clade A includes the ex type of C. gloeosporioides, clade B includes the ex type ITS sequence of C. boninense, and clades C and D are unidentified. The ITS yielded limited resolution and support within all clades, in particular the C. gloeosporioides clade (A), the focal lineage dealt with in this study. In contrast the 5'-tef1 screen differentiated nine distinctive haplotype subgroups within the C. gloeosporioides clade that were concordant with phylogenetic terminals resolved in a five-locus nuclear phylogeny. Among these were two phylogenetic species associated with symptomatic infections specific to either cacao or mango and five phylogenetic species isolated principally as asymptomatic infections from cacao and other plant hosts. We formally describe two new species, C. tropicale and C. ignotum, that are frequent asymptomatic associates of cacao and other Neotropical plant species, and epitypify C. theobromicola, which is associated with foliar and fruit anthracnose lesions of cacao. Asymptomatic Colletotrichum strains isolated from cacao plants grown in China included six distinct C. gloeosporioides clade taxa, only one of which is known to occur in the Neotropics.
[24]
Samson RA, 1974. Paecilomyces and some allied Hyphomycetes. Studies in Mycology, 6:32-33
[25]
Sharma L, Oliveira I, Torres L, Marques G, 2018. Entomopathogenic fungi in Portuguese vineyards soils: suggesting a ‘Galleria-Tenebrio-bait method’ as baitinsects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). MycoKeys, 38:1-23
[26]
Shing SZ, 1975. Classification of Cordyceps sobolifera (Hill) Berk. et Br. and Cordyceps cicadae Shing sp. nov. Acta Microbiological Sinica, 15(1):21-26
[27]
Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology, 57:5-59
Cordyceps, comprising over 400 species, was historically classified in the Clavicipitaceae, based on cylindrical asci, thickened ascus apices and filiform ascospores, which often disarticulate into part-spores. Cordyceps was characterized by the production of well-developed often stipitate stromata and an ecology as a pathogen of arthropods and Elaphomyces with infrageneric classifications emphasizing arrangement of perithecia, ascospore morphology and host affiliation. To refine the classification of Cordyceps and the Clavicipitaceae, the phylogenetic relationships of 162 taxa were estimated based on analyses consisting of five to seven loci, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1alpha (tef1), the largest and the second largest subunits of RNA polymerase II (rpb1 and rpb2), beta-tubulin (tub), and mitochondrial ATP6 (atp6). Our results strongly support the existence of three clavicipitaceous clades and reject the monophyly of both Cordyceps and Clavicipitaceae. Most diagnostic characters used in current classifications of Cordyceps (e.g., arrangement of perithecia, ascospore fragmentation, etc.) were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata. Therefore, we revise the taxonomy of Cordyceps and the Clavicipitaceae to be consistent with the multi-gene phylogeny. The family Cordycipitaceae is validated based on the type of Cordyceps, C. militaris, and includes most Cordyceps species that possess brightly coloured, fleshy stromata. The new family Ophiocordycipitaceae is proposed based on Ophiocordyceps Petch, which we emend. The majority of species in this family produce darkly pigmented, tough to pliant stromata that often possess aperithecial apices. The new genus Elaphocordyceps is proposed for a subclade of the Ophiocordycipitaceae, which includes all species of Cordyceps that parasitize the fungal genus Elaphomyces and some closely related species that parasitize arthropods. The family Clavicipitaceaes. s. is emended and includes the core clade of grass symbionts (e.g., Balansia, Claviceps, Epichloe, etc.), and the entomopathogenic genus Hypocrella and relatives. In addition, the new genus Metacordyceps is proposed for Cordyceps species that are closely related to the grass symbionts in the Clavicipitaceaes. s.Metacordyceps includes teleomorphs linked to Metarhizium and other closely related anamorphs. Two new species are described, and lists of accepted names for species in Cordyceps, Elaphocordyceps, Metacordyceps and Ophiocordyceps are provided.
[28]
Vaidya G, Lohman DJ, Meier R, 2011. Sequence Matrix: concatenation software for the fast assembly of multigene datasets with character set and codon information. Cladistics, 27(2):171-180
[29]
Vilgalys R, Sun BL, 1994. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proceedings of Natural Academy of Science of USA, 91:4599-4603
[30]
White TJ, Bruns T, Lee S, Taylor JW, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.) PCR protocols: a guide to methods and applications. Academic Press, New York. 315-322
[31]
Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC, 2019. Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Diversity, 98:1-76
[32]
Zha LS, Huang SK, Xiao YP, Boonmee S, Eungwanichayapant PD, McKenzie EHC, Kryukov V, Wu XL, Hyde KD, Wen TC, 2018. An evaluation of common Cordyceps (Ascomycetes) species found in Chinese markets. International Journal of Medicinal Mushrooms, 20(12):1149-1162
[33]
Zha LS, Xiao YP, Jeewon R, Zou X, Wang X, Boonmee S, Eungwanichayapant PD, McKenzie EHC, Hyde KD, Wen TC, 2019. Notes on the Medicinal Mushroom Chanhua (Cordyceps cicadae (Miq.) Massee). Chiang Mai Journal of Science, 46(6):1023-1035
[34]
蔡邦华, 1957. 昆虫分类学. 上册. 北京: 财政经济出版社. 64
[35]
代永东, 虞泓, 曾文波, 杨俊媛, 何璐, 2016. 多基因联合分析棒束孢属Isaria (Ascomycota,Cordycipitaceae) 系统发育关系. 菌物学报, 35(2):147-160
[36]
李增智, 陈祝安, 陈以平, 2014. 国宝虫草金蝉花. 合肥: 合肥工业大学出版社. 276
[37]
李增智, Nigel L. Hywel-Jones, 栾丰刚, 张胜利, 孙长胜, 陈祝安, 李春如, 谭悠久, 董建飞, 2020. 与蝉花有关的虫草菌生物多样性的研究I. 重要药用真菌蝉花名称的文献考证. 菌物学报, 39(12):2191-2201
[38]
梁宗琦(主编), 2007. 中国真菌志,第32卷,虫草属. 北京:科学出版社. 77-80
[39]
刘爱英, 2012. 中国蝉花资源研究应用. 贵阳: 贵州科技出版社. 57-59
[40]
刘爱英, 邹晓, 谌斌, 2011. 虫草属一新种,蝉棒束孢有性型. 中国农业杂志(学术版), 4(11):10-14
[41]
刘波, 1974. 中国药用真菌. 太原: 山西人民出版社. 14-15
[42]
刘少华, 陆金萍, 朱瑞良, 戴富明, 2005. 一种快速简便的植物病原真菌基因组DNA提取方法. 植物病理学报, 35(4):362-265
[43]
幸兴球, 1975. 大蝉草和小蝉草的分类. 微生物学报, 15(1):21-26

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(622 KB)

Accesses

Citation

Detail

段落导航
相关文章

/