以演化时间为新增指标构建真菌分类系统

赵瑞琳,贺茂强,刘建魁

菌物学报 ›› 2021, Vol. 40 ›› Issue (4) : 834-843.

PDF(449 KB)
中文  |  English
PDF(449 KB)
菌物学报 ›› 2021, Vol. 40 ›› Issue (4) : 834-843. DOI: 10.13346/j.mycosystema.210054 CSTR: 32115.14.j.mycosystema.210054
特约综述

以演化时间为新增指标构建真菌分类系统

作者信息 +

Using divergence time as an additional criterion in fungal systematics

Author information +
文章历史 +

摘要

随着分子系统发育研究的普及,真菌各分类类群逐渐被修订为单系发生类群,通常结合形态学特征为代表的表型特征(“单系+表型特征”)对不同的分类等级命名是最为普遍的方法。历史上存在的大量多系名称被逐步修订、补充和完善,各个不同等级类群的分类系统变得更加合理、客观和趋于自然,这是分类学进程中巨大的进步。然而系统发育重建所揭示的单系类群并没有相应的标准来对应于纲目科属等种上分类等级,所以并不能直接转换为分类系统,且在分类实践中,由于不同分类学家在决定各个单系类群对应的分类等级时采用的尺度不同、依据不一,严重影响分类系统的科学性和稳定性。随着分子钟分析方法的出现,实现了对现生生物类群演化时间的估算,所以在系统发育、表型特征研究的基础上,把演化时间作为真菌分类的新增指标来划分和命名种上分类等级的方法(“单系+表型特征+演化时间”)得以应用。本文回顾了首次利用这种方法重建蘑菇属分类系统的工作,目前研究所揭示的担子菌门和子囊菌门从门至科各分类等级的演化时间范围,及利用演化时间为新增指标在分类命名中的应用;分析了影响演化时间估算可靠性的关键因素及对策。我们认为在构建分类系统的研究中增加演化时间指标,使新分类系统体现类群进化过程中的时间维度,能更全面反映类群的进化历程,促进分类系统的科学性和稳定性。

Abstract

The flourish and popularity of molecular phylogenetic study greatly promoted the systematic study of fungi. Nowadays, naming taxa by “monophyly + phenotypes” is the most popular method applied in taxonomic studies, and the taxonomic systems of lots of historically problematic groups were thus revised, supplemented or reconstructed. Those more objective and natural systems for those monophyletic groups could be the greatest progress we have ever made in fungal taxonomy. However, a phylogenetic topology could not correspond to a taxonomic system as there do not have a universal criterion in ranking these monophyletic groups as genera, families, orders and classes (above species level), and that caused the unstable fungal taxonomic system. In practice, different taxonomists have different opinions in choosing criterion to rank taxa which greatly influenced the stability of fungal taxonomic system. With the advances of molecular clock analyses, estimation of divergence times of living taxa becomes available. Thus, based on phylogenetic and phenotypic studies, using divergence time as an additional criterion (“monophyly + phenotype + divergence time”) to rank higher-level taxa has been practiced. In this paper, the work which firstly rebuilt a standardized taxonomic system for the genus Agaricus by using divergence time as an additional criterion was reviewed, and the divergence time ranged from family to phylum in Ascomycota and Basidiomycota was revealed and the achievements of using divergence time as an additional criterion to rank taxa were enumerated. The key factors which influence divergence time estimation were discussed and corresponding suggestions were given. Generally, using divergence time as an additional criterion to build fungal taxonomic system can make the taxonomic system reflect the temporal dimension of evolution, and make the new system approach the evolutionary process and greatly promote the stability of related taxonomic system.

关键词

BEAST / 分类学 / 系统发育 / 化石标本 / 校订点

Key words

BEAST / taxonomy / phylogeny / fossil / calibrations

引用本文

导出引用
赵瑞琳, 贺茂强, 刘建魁. 以演化时间为新增指标构建真菌分类系统[J]. 菌物学报, 2021, 40(4): 834-843 https://doi.org/10.13346/j.mycosystema.210054
ZHAO Rui-Lin, HE Mao-Qiang, LIU Jian-Kui. Using divergence time as an additional criterion in fungal systematics[J]. Mycosystema, 2021, 40(4): 834-843 https://doi.org/10.13346/j.mycosystema.210054

参考文献

[1]
Aime MC, Matheny PB, Henk DA, Frieders EM, Nilsson RH, Piepenbring M, McLaughlin DJ, Szabo LJ, Begerow D, Sampaio JP, 2006. An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia, 98:896-905
[2]
Avise JC, Johns GC, 1999. Proposal for a standardized temporal scheme of biological classification for extant species. Proceedings of the National Academy of Sciences, 96:7358-7363
[3]
Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dörfelt H, Gube M, Jackson DJ, Reitner J, Seyfullah LJ, 2014. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Molecular Phylogenetics and Evolution, 78:386-398
[4]
Binder M, Hibbett DS, Larsson KH, Larsson E, Langer E, Langer G, 2005. The phylogenetic distribution of resupinate forms across the major clades of mushroom‐forming fungi (Homobasidiomycetes). Systematics and Biodiversity, 3:113-157
[5]
Bouckaert RR, Drummond AJ, 2017. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17:1-11
[6]
Budd G, 2001. Climbing life’s tree. Nature, 412:487
[7]
Budd GE, Jensen S, 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75:253-295
[8]
Callac P, Chen J, 2018. Tropical species of Agaricus. In: Sánchez JE, Mata G, Royse DJ (eds.) Updates on tropical mushrooms. Basic and applied research. San Cristobal de Las Casas, Chiapas. 25-38
[9]
Cao B, He MQ, Ling ZL, Zhang MZ, Wei SL, Zhao RL, 2020. A revision of Agaricus section Arvenses with nine new species from China. Mycologia, 113(1):191-211
[10]
Cappelli A, 1984. Agaricus. Saronno, Librería editrice Biella Giovanna, Italy. 1-558
[11]
Chen J, Callac P, Parra L, Karunarathna S, He MQ, Moinard M, De Kesel A, Raspé O, Wisitrassameewong K, Hyde K, 2017. Study in Agaricus subgenus Minores and allied clades reveals a new American subgenus and contrasting phylogenetic patterns in Europe and Greater Mekong Subregion. Persoonia, 38:170-196
[12]
Darriba D, Taboada GL, Doallo R, Posada D, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9:772
[13]
Dayarathne MC, Maharachchikumbura SS, Jones E, Dong W, Devadatha B, Yang J, Ekanayaka AH, de Silva W, Sarma VV, Al-Sadi AM, 2019. Phylogenetic revision of Savoryellaceae and evidence for its ranking as a subclass. Frontiers in Microbiology, 10:840
[14]
Divakar PK, Crespo A, Kraichak E, Leavitt SD, Singh G, Schmitt I, Lumbsch HT, 2017. Using a temporal phylogenetic method to harmonize family- and genus-level classification in the largest clade of lichen-forming fungi. Fungal Diversity, 84:101-117
[15]
Dobzhansky T, 1973. Nothing in biology makes sense except in the light of evolution. American Biology Teacher, 35:125-129
[16]
Drummond AJ, Ho SY, Phillips MJ, Rambaut A, 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology, 4:e88
[17]
Drummond AJ, Suchard MA, Xie D, Rambaut A, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29:1969-1973
Computational evolutionary biology, statistical phylogenetics and coalescent-based population genetics are becoming increasingly central to the analysis and understanding of molecular sequence data. We present the Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package version 1.7, which implements a family of Markov chain Monte Carlo (MCMC) algorithms for Bayesian phylogenetic inference, divergence time dating, coalescent analysis, phylogeography and related molecular evolutionary analyses. This package includes an enhanced graphical user interface program called Bayesian Evolutionary Analysis Utility (BEAUti) that enables access to advanced models for molecular sequence and phenotypic trait evolution that were previously available to developers only. The package also provides new tools for visualizing and summarizing multispecies coalescent and phylogeographic analyses. BEAUti and BEAST 1.7 are open source under the GNU lesser general public license and available at http://beast-mcmc.googlecode.com and http://beast.bio.ed.ac.uk.
[18]
Gould SJ, Eldredge N, 1972. Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed.) Models in Paleobiology. Freeman, 82-115
[19]
Han LH, Feng B, Wu G, Halling RE, Buyck B, Yorou NS, Ebika ST, Yang ZL, 2018. African origin and global distribution patterns: evidence inferred from phylogenetic and biogeographical analyses of ectomycorrhizal fungal genus Strobilomyces. Journal of Biogeography, 45:201-212
[20]
He MQ, Chen J, Zhou JL, Ratchadawan C, Hyde KD, Zhao RL, 2017. Tropic origins, a dispersal model for saprotrophic mushrooms in Agaricus section Minores with descriptions of sixteen new species. Scientific Reports, 7:5122
[21]
He MQ, Chuankid B, Hyde KD, Cheewangkoon R, Zhao RL, 2018. A new section and species of Agaricus subgenus Pseudochitonia from Thailand. MycoKeys, 40:53-67
[22]
He MQ, Zhao RL, Hyde KD, et al., 70 authors, 2019. Notes, outline and divergence times of Basidiomycota. Fungal Diversity, 99:105-367
[23]
Heinemann P, 1978. Essai d’une clé de determination des genres Agaricus et Micropsalliota. Sydowia, 30:6-37
[24]
Hennig W, 1966. Phylogenetic systematics. Univ. Ill. Press, Ur-bana. 1-263
[25]
Hibbett DS, Grimaldi D, Donoghue MJ, 1997. Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of Homobasidiomycetes. American Journal of Botany, 84:981-991
[26]
Hyde KD, Maharachchikumbura SS, Hongsanan S, Samarakoon MC, Lücking R, Pem D, Harishchandra D, Jeewon R, Zhao RL, Xu JC, 2017. The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Diversity, 84:1-23
[27]
James TY, Stajich JE, Hittinger CT, Rokas A, 2020. Toward a fully resolved fungal tree of life. Annual Review of Microbiology, 74:291-313
[28]
Kerrigan RW, 1986. The Agaricales (Gilled Fungi) of California 6. Agaricaceae. Mad River Press, Arcata, California. 1-62
[29]
Kerrigan RW, 2016. Agaricus of North America. Vol. 114. Memoirs of the New York Botanical Garden. The New York Botanical Garden Press, New York. 1-573
[30]
Konrad P, Maublanc A, 1952. Les Agaricales. Tome 2. Paul Lechevalier, Paris. 1-191
[31]
Kühner R, Romagnesi H, 1953. Flore analytique des champignons superieurs, (Agarics, Bolets, Chanterelles). Masson, Paris. 1-556
[32]
Li SF, Xi YL, Qi CX, Liang QQ, Wei ZL, Li GJ, Zhao D, Lia SJ, Wen HA, 2014. Agaricus taeniatus sp. nov., a new member of Agaricus sect. Bivelares from northwest China. Mycotaxon, 129(1):187-196
Agaricus taeniatus from Qilian Mountains, northwest China, is described as a new species. It is distinguished by its larger basidia and basidiospores, band-like velar remnants on the stipe surface, and persistent single rings with eroded edges. ITS1-5.8S-ITS2 rDNA sequence analyses fully support the establishment of the new species within A. sect. Bivelares.
[33]
Li Y, 1990. New species and records of the genus Agaricus from China. Acta Botanica Yunnanica, 12(2):154-160 (in Chinese)
[34]
Linnaeus C, 1753. Species Plantarum. Stockholm, Laurentius Salvius. 1-1200
[35]
Liu AQ, Dai RC, Zhang MZ, Cao B, Xi YL, Wei SL, Zhao RL, 2020. Species of Agaricus section Agaricus from China. Phytotaxa, 452(1):1-18
[36]
Liu JK, Hyde KD, Jeewon R, Phillips AJ, Maharachchikumbura SS, Ryberg M, Liu ZY, Zhao Q, 2017. Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Diversity, 84:75-99
[37]
Liu NG, Lin CG, Liu JK, Samarakoon MC, Hongsanan S, Bhat DJ, Hyde KD, McKenzie EH, Jumpathong J, 2018. Lentimurisporaceae, a new Pleosporalean family with divergence times estimates. Cryptogamie, Mycologie, 39:259-282
[38]
Lücking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT, 2009. Fungi evolved right on track. Mycologia, 101:810-822
[39]
Mahdizadeh V, Parra LA, Safaie N, Goltapeh EM, Chen J, Guinberteau J, Callac P, 2018. A phylogenetic and morphological overview of sections Bohusia, Sanguinolenti, and allied sections within Agaricus subg. Pseudochitonia with three new species from France, Iran, and Portugal. Fungal Biology, 122:34-51
[40]
Margoliash E, 1963. Primary structure and evolution of cytochrome C. Proceedings of the National Academy of Sciences of the United States of America, 50:672
[41]
McPeek MA, Brown JM, 2007. Clade age and not diversification rate explains species richness among animal taxa. The American Naturalist, 169:E97-E106
[42]
Möller FH, 1950. Danish Psalliota species I. Friesia, IV. 1-60
[43]
Parra LA, 2008. Fungi europaei. Agaricus L. Allopsalliota, Nauta & Bas. Candusso Edizioni, Alassio. 1-824
[44]
Parra LA, 2013. Fungi europaei vol Volume 1A. Agaricus L. Allopsalliota, Nauta & Bas. Candusso Edizion, Alassio. 1-1168
[45]
Parra LA, Angelini C, Ortiz-Møller FH, 1950. Danish Psalliota species. Preliminary studies for a monograph of the Danish Psalliotae. Friesia, 4(1-2):1-60
[46]
Parra LA, Angelini C, Ortiz-Santana B, Mata G, Billette C, Rojo C, Chen J, Callac P, 2018. The genus Agaricus in the Caribbean. Nine new taxa mostly based on collections from the Dominican Republic. Phytotaxa, 345:219-271
[47]
Pilát A, 1951. The Bohemian species of the genus Agaricus. Acta Entomologica Musei Nationalis Pragae, 7B(1):1-142
[48]
Prieto M, Wedin M, 2013. Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One, 8:e65576
[49]
Robinson NE, Robinson AB, 2001. Molecular clocks. Proceedings of the National Academy of Sciences of the United States of America, 98(3):944-949
[50]
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61:539-542
[51]
Samarakoon MC, Hyde KD, Hongsanan S, McKenzie EH, Ariyawansa HA, Promputtha I, Zeng XY, Tian Q, Liu JK, 2019. Divergence time calibrations for ancient lineages of Ascomycota classification based on a modern review of estimations. Fungal Diversity, 96:285-346
[52]
Singer R, 1986. The Agaricales in modern taxonomy. 4th ed. Koeltz Scientific Books, Koenigstein. 1-981
[53]
Smith SY, Currah RS, Stockey RA, 2004. Cretaceous and eocene poroid hymenophores from Vancouver Island, British Columbia. Mycologia, 96:180-186
[54]
Stadler T, Rabosky DL, Ricklefs RE, Bokma F, 2014. On age and species richness of higher taxa. The American Naturalist, 184:447-455
[55]
Stanley SM, 1975. A theory of evolution above the species level. Proceedings of the National Academy of Sciences of the United States of America, 72:646-650
[56]
Talavera G, Lukhtanov VA, Pierce NE, Vila R, 2013. Establishing criteria for higher‐level classification using molecular data: the systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). Cladistics, 29:166-192
[57]
Taylor TN, Hass T, Kerp H, 1999. The oldest fossil ascomycetes. Nature, 399:648
[58]
Taylor TN, Remy W, Hass H, 1994. Allomyces in the Devonian. Nature, 367:601
[59]
Thongklang N, Chen J, Bandara AR, Hyde KD, Raspé O, Parra LA, Callac P, 2016. Studies on Agaricus subtilipes, a new cultivatable species from Thailand, incidentally reveal the presence of Agaricus subrufescens in Africa. Mycoscience, 57:239-250
[60]
Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, Sánchez-Ramírez S, Szöllősi GJ, Szarkándi JG, Papp V, Albert L, 2019. Megaphylogeny resolves global patterns of mushroom evolution Nature. Ecology & Evolution, 3:668-678
[61]
Wang K, Kirk PM, Yao YJ, 2020. Development trends in taxonomy, with special reference to fungi. Journal of Systematics and Evolution, 58:406-412
[62]
Wasser SP, 1980. Flora fungorum RSS Ucrainicae. Kiev, Naukova Dumka. 1-238
[63]
Zhang SN, Hyde KD, Jones EG, Jeewon R, Cheewangkoon R, Liu JK, 2019. Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and Striatiguttula gen. nov. from palms. MycoKeys, 49:99
[64]
Zhao RL, Karunarathna S, Raspé O, Parra LA, Guinberteau J, Moinard M, De Kesel A, Barroso G, Courtecuisse R, Hyde KD, 2011. Major clades in tropical Agaricus. Fungal Diversity, 51:279-296
[65]
Zhao RL, Li GJ, Sánchez-Ramírez S, Stata M, Yang ZL, Wu G, Dai YC, He SH, Cui BK, Zhou JL, 2017. A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Diversity, 84:43-74
[66]
Zhao RL, Zhou JL, Chen J, Margaritescu S, Sánchez-Ramírez S, Hyde KD, Callac P, Parra LA, Li GJ, Moncalvo JM, 2016. Towards standardizing taxonomic ranks using divergence times-a case study for reconstruction of the Agaricus taxonomic system. Fungal Diversity, 78:239-292
[67]
Zhu L, Song J, Zhou JL, Si J, Cui BK, 2019. Species diversity, phylogeny, divergence time, and biogeography of the genus Sanghuangporus (Basidiomycota). Frontiers in Microbiology, 10:812
[68]
李宇, 1990. 中国蘑菇属新种和新记录种. 云南植物研究, 12(2):154-160

致谢

感谢中科院微生物所刘杏忠研究员、蔡磊研究员在我们一系列相关研究中提出的宝贵意见和建议。

基金

国家自然科学基金(31961143010)
国家自然科学基金(31970010)
国家自然科学基金(31470152)
国家重点研发计划(2018YFD0400200)
北京食用菌创新团队(BAIC05-2021)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(449 KB)

Accesses

Citation

Detail

段落导航
相关文章

/