三种分离自冬虫夏草真菌及培养条件
Three fungal strains isolated from stroma of Ophiocordyceps sinensis and their culture conditions
责任编辑: 韩丽
收稿日期: 2021-01-7 接受日期: 2021-02-19
| 基金资助: |
|
Corresponding authors:
Received: 2021-01-7 Accepted: 2021-02-19
| Fund supported: |
|
作者简介 About authors
ORCID:MENGYun(0000-0002-8830-6658) 。
对采自青海玉树、青海果洛和云南迪庆的冬虫夏草鲜品进行虫生真菌的分离、纯化,获得3种生长形态不同的真菌QH 2019、GL 2019和YN 2019。通过形态学及分子鉴定,菌株QH 2019为蝙蝠蛾拟青霉Samsoniella hepiali,菌株GL 2019为粉棒束孢Isaria farinosa,菌株YN 2019为玫烟色棒束孢Isaria fumosorosea。对这3株菌的培养条件初步研究,结果表明:菌株QH 2019在1/4 SDAY培养基上菌丝日生长速率最快,为(1.94±0.55)mm/d,且菌丝致密、粗壮,含水率高达(91.90±1.22)%,虫草素和虫草酸均以PDA培养的含量最高,分别为(0.47±0.022)mg/g和(3.24±0.021)mg/g;菌株GL 2019在PDA培养基上菌丝日生长速率、菌丝含水率、虫草素含量和虫草酸含量都最高,分别为(2.37±0.20)mm/d、(88.34±2.00)%、(0.23±0.013)mg/g和(6.92±0.019)mg/g,但其菌丝在1/4 SDAY培养基上生长最为致密、粗壮;菌株YN 2019在PDA培养基上菌丝日生长速率、虫草素和虫草酸的含量最高,分别为:(2.27±0.27)mm/d、(0.50±0.012)mg/g和(11.32±0.16)mg/g,但其菌丝在1/4 SDAY培养基上含水率最高(95.23±1.65)%,且生长最为致密、粗壮。综合评价表明3株真菌中YN 2019菌丝中虫草素和虫草酸的含量高、生长速率快,有较好的药用研究价值。
关键词:
Three fungal strains were isolated from fresh stroma of Ophiocordyceps sinensis collected from Yushu, Guoluo of Qinghai and Diqing of Yunnan and they were identified as Samsoniella hepiali (QH 2019), Isaria farinosa (GL 2019) and Isaria fumosorosea (YN 2019) based on phylogenetic evidence. The highest mycelial growth rate of QH 2019 was observed on 1/4 SDAY medium, with quantitative value of (1.94±0.55)mm/d, and the mycelia were dense, with water content of (91.90±1.22)%. The highest content of cordycepin and cordycepic acid reaching (0.47±0.022)mg/g and (3.24±0.021)mg/g respectively was observed in culture on PDA. The mycelial growth rate, mycelial water content, cordycepin and cordycepic acid of GL 2019 were the highest in the culture growing on PDA, reaching (2.37±0.20)mm/d, (88.34±2.00)%, (0.23±0.013)mg/g and (6.92±0.019)mg/g respectively, but the mycelium grew much densely on 1/4 SDAY medium. The mycelial growth rate, cordycepin and cordycepic acid of YN 2019 were the highest in the culture growing on PDA, reaching (2.27±0.27)mm/d, (0.50±0.012)mg/g and (11.32±0.16)mg/g respectively, but the mycelium growing on 1/4 SDAY medium was much dense, with the highest mycelial water content of (95.23±1.65)%. The results suggested that Isaria fumosorosea YN 2019 had potential medicinal values.
Keywords:
本文引用格式
孟云, 唐汉尧, 施金铎, 王敦.
MENG Yun, TANG Han-Yao, SHI Jin-Duo, WANG Dun.
冬虫夏草是由冬虫夏草菌Ophiocordyceps sinensis (Berk.) G.H. Sung et al.侵染蝙蝠蛾幼虫所形成的子座和充满菌丝的幼虫复合体。近些年研究表明,冬虫夏草提取物和菌丝发酵液中主要的活性物质为虫草酸(钱正明等 2019)、虫草素(胡敏和程震勇 2019)、多糖(崔兵兵等 2019)等;具有诱导凋亡和抗癌(Bai et al. 2020;Qi et al. 2020)、调节机体免疫和微生物群落(Ji et al. 2020;Ying et al. 2020)、减压降脂抗糖尿(Li et al. 2020)、抗菌消炎(Li et al. 2020)、抗氧化延缓衰老(Wang et al. 2005;Wu et al. 2019)、镇静催眠和抗惊厥(丁婷等 2008)、延缓神经元细胞衰老(Cao et al. 2020)等作用。
在中国,冬虫夏草主要分布于西北西藏、青海、四川、云南3 000-5 000m的高原草甸地区(周刊社等 2018;徐梦等 2019),由于生长环境与寄主的限制,天然冬虫夏草资源有限且呈下降趋势(杨大荣等 1996)。因此,从20世纪80年代起,研究人员对新鲜的冬虫夏草的菌种分离、人工培养开发进行了大量的研究。已有多个独立实验证明中国被毛孢Hirsutella sinensis X.J. Liu et al.是冬虫夏草菌的无性型,其发酵产物具有调节自身免疫(章水晶等 2019)、护肾(沈龙海等 2011)、抗氧化(丁婷等 2007)等功效,被制成“百令”胶囊(洪露露 2019);从云南迪庆冬虫夏草中分离出来的蝙蝠蛾拟青霉Samsoniella hepiali (Q.T. Chen & R.Q. Dai ex R.Q. Dai et al.) H. Yu et al.(Wang et al. 2020),其菌丝发酵产物与冬虫夏草有效成分相似(Jarmila et al. 2019),已被开发成药物“金水宝”胶囊(赵小惠等 2020)。
为了获得具有药用价值的冬虫夏草菌及其相关菌株,本研究拟从青海玉树、果洛和云南迪庆采集的新鲜冬虫夏草中分离纯化,并对纯化的菌株进行显微形态学和分子生物学的鉴定;选择有药用价值的菌株,探究其在不同培养条件下对菌株生长和有效物质产量的影响,以期获得具有药用价值和人工培养前景的菌株资源。
1 材料与方法
1.1 材料来源
供试菌株从云南省迪庆市和青海省果洛市、玉树市采集的新鲜冬虫夏草样品中分离获得,现保存于西北农林科技大学植物保护学院昆虫与微生物资源利用实验室菌种库;样品采集于2019年5月至6月。
1.2 方法
1.2.1 培养基:1/4 SDAY选择性培养基:酵母提取物2.5g,葡萄糖10.0g,蛋白胨2.5g,琼脂20.0g,水1 000mL,121℃高压灭菌20min,备用;使用前加入氨苄西林钠0.5g和硫酸链霉素0.6g。马铃薯葡萄糖琼脂(potato dextrose agar,PDA)培养基:去皮马铃薯200g,水1 000mL,煮沸15min,过滤,取上清定容至1 000mL,再加入葡萄糖20.0g、琼脂20.0g,121℃高压灭菌20min,备用。查氏培养基(Czapek-Dox medium):硝酸钠3.0g、磷酸二氢钾1.0g、七水合硫酸镁0.5g、氯化钾0.5g、硫酸亚铁0.01g、蔗糖30.0g、琼脂20.0g、水1 000mL,121℃高压灭菌20min,备用。
1.2.2 菌株的分离与纯化:将采集到的冬虫夏草新鲜样品用75%乙醇进行表面消毒,待表面干燥后用灭菌的手术刀切取0.5cm×0.5cm小块,接种在加入抗生素的1/4 SDAY培养基上,15℃、避光培养7d;挑取菌落边缘,进行纯化培养。
1.2.3 菌株的形态学观察:将分离、纯化的菌株接种于含1/4 SDAY培养基的培养皿和200mL组织培养瓶(培养基30mL)中,将培养皿和组培瓶在15℃恒温生化箱遮光培养30、60d,观察菌株培养皿和组培瓶中生长特征,主要包括菌落形态、菌丝颜色、渗出物颜色等。挑取少量菌丝,对菌株进行形态特征的显微观察,主要包括菌株的菌丝特征、产孢结构特征、孢子形态及大小等。参考《中国真菌志·第43卷》(梁宗琦等 2013)中的检索表及各菌株的特征描述对分离获得的菌株进行初步鉴定。
1.2.4 DNA提取、PCR扩增及测序:将分离获得的菌株接种于1/4 SDAY培养皿上,15℃、培养14d,收集培养皿表面的菌丝,根据Masoudi et al.(2018)的方法进行菌丝总DNA的提取。
以提取的总DNA为模板,进行多基因引物扩增及测序,引物序列见表1。PCR反应体系(25μL):ddH2O 17.7µL,10×PCR Reaction Buffer 2.5µL,dNTPs(2.5mmol/L)2µL,正、反向引物(10μmol/L)各0.5µL,0.1% BSA 0.3µL,Taq酶(5U/μL)0.5µL,DNA模板1µL。
表1 本研究所用引物
Table 1
| 基因名称 Gene | 引物名称 Primer | 序列 Sequence (5’-3’) | 参考文献 Reference |
|---|---|---|---|
| nrSSU | nrSSU-CoF | TCTCAAAGATTAAGCCATGC | Guhr & Weig 2020 |
| nrSSU-CoR | TCACCAACGGAGACCTTG | ||
| nrLSU | LR5 | ATCCTGAGGGAAACTTC | Vilgalys & Sun 1994 |
| LR0R | GTACCCGCTGAACTTAAGC | ||
| TEF | EF1α-EF | GCYCCYGGHCAYCGTGAYTTYAT | Bischoff et al. 2009 |
| EF1α-ER | ATGACACCRACRGCRACRGTYTG | Sung et al. 2007 | |
| RPB1 | RPB1Cr | CCNGCDATNTCRTTRTCCATRTA | Castlebury et al. 2004 |
| CRPB1A | CAYCCWGGYTTYATCAAGAA | ||
| RPB2 | fRPB2-7cR | CCCATRGCTTGTYYRCCCAT | Liu et al. 1999 |
| fRPB2-5F | GAYGAYMGWGATCAYTTYGG | ||
| ITS | ITS1 | TCCGTAGGTGAACCTGCGG | White et al. 1990 |
| ITS2 | GCTGCGTTCTTCATCGGATGC |
注:ITS中包括核糖体ITS1、ITS2、核糖体5.8S亚基序列
Note: ITS1, ITS2 and ribosome 5.8S subunit were all included in ITS.
ITS基因的PCR反应条件:95℃ 5min;95℃ 30s,60℃ 30s,72℃ 1min,35个循环;72℃ 10min。nrSSU基因的PCR反应条件:95℃ 4min;94℃ 50s,56℃ 50s,72℃ 2min,循环8次,每循环退火温度降低0.5℃;94℃ 50s,52℃ 50s,72℃ 2min,循环25次;72℃ 10min,12℃保存。TEF、RPB1、RPB2、nrLSU基因的PCR反应条件:95℃ 4min;94℃ 50s,56℃ 50s,72℃ 70s,循环8次,每循环退火温度降低0.5℃;94℃ 50s,52℃ 50s,72℃ 70s循环25次;72℃ 10min,12℃保存(段东娥 2019)。用1%琼脂糖胶检测PCR扩增产物,将PCR未纯化产物送至生工生物工程(上海)股份有限公司进行测序。
1.2.5 序列对比及系统发育分析:将测序结果在GenBank中进行同源序列比对;结合已报道的分离自冬虫夏草的菌株,并下载菌株的相关序列,用MEGA-X进行序列比对,在PhyloSuite v1.2.1中采用最大似然法(maximum likelihood,ML),联合真菌ITS、nrSSU、nrLSU、TEF、RPB1、RPB2序列(表2)构建系统发育树,确定分离菌株的种属地位。
表2 用于多基因序列分析的来自GenBank中的菌株及序列登录号
Table 2
| 物种 Species | 菌株号 Strain No. | 基因序列登录号 GenBank accession number | |||||
|---|---|---|---|---|---|---|---|
| nrSSU | nrLSU | ITS | TEF | RPB1 | RPB2 | ||
| Isaria farinosa | GL 2019 | MW391721 | MW391777 | MW391716 | MW504644 | MW509836 | MW504642 |
| Samsoniella hepiali | QH 2019 | MW391720 | MW391779 | MW391718 | MW504645 | MW509835 | MW504643 |
| Isaria fumosorosea | YN 2019 | MW391722 | MW391778 | MW391717 | MW509838 | MW509837 | MW509839 |
| Samsoniella hepiali | YFCC 5823 | MN576745 | MN576801 | - | MN576971 | MN576861 | MN576915 |
| Samsoniella hepiali | YFCC 5828 | MN576744 | MN576800 | - | MN576970 | MN576860 | MN576914 |
| Samsoniella hepiali | ICMM Cs-4 | MN576743 | MN576799 | - | MN576969 | MN576859 | MN576913 |
| Samsoniella hepiali | ICMM 82-2 | MN576738 | MN576794 | - | MN576964 | MN576854 | MN576908 |
| Isaria farinosa | MY 01338 | JN940994 | JN940901 | JN942620 | - | - | - |
| Isaria farinosa | CBS 240.32 | JF415958 | JF415979 | - | JF416019 | JN049895 | JF415999 |
| Isaria farinosa | NHJ 08013 | JN940995 | JN940900 | JN942628 | - | - | - |
| Cordyceps cf. farinosa | OSC 111005 | DQ522558 | DQ518773 | - | DQ522348 | DQ522394 | - |
| Cordyceps cf. farinosa | OSC 111004 | EF468986 | EF468840 | - | EF468780 | EF468886 | - |
| Cordyceps farinosa | BUC 418 | MH879643 | MH879595 | - | MH879661 | MH885444 | MH879618 |
| Cordyceps farinosa | BUC 386 | MH879641 | MH879593 | - | MH879660 | MH885442 | MH879616 |
| Cordyceps fumosorosea | CBS 375.70 | AB083035 | AB083035 | AY524183 | MF416501 | MF416658 | MF416452 |
| Cordyceps fumosorosea | CBS 107.10 | MF416608 | MG665227 | - | HM161735 | - | MG665237 |
| Isaria amonen-rosea | CBS 729.73 | MF416604 | MF416551 | AY624169 | MF416495 | MF416652 | MF416446 |
| Isaria takamizusanensis | NHJ 3497 | EU369096 | EU369033 | - | - | - | - |
| Isaria takamizusanensis | NHJ 3582 | EU369097 | EU369034 | - | - | ||
| Cordyceps cf. takaomontana | NHJ 12623 | EF468984 | EF468838 | - | EF468778 | EF468884 | EF468932 |
| Cordyceps tenuipes | BUC 394 | MH879642 | MH879594 | - | MH879667 | MH885443 | - |
| Cordyceps tenuipes | YFCC 4266 | MN5767774 | MN576830 | - | MN577000 | MN576890 | MN576944 |
| Cordyceps javancia | TBRC 7260 | - | - | MF140744 | MF140830 | MF140779 | MF140803 |
| Cordyceps javancia | CBS 134.22 | MF416610 | MF416558 | - | MF416504 | MF416661 | MF416455 |
| Cordyceps cateniannulata | CBS 152.83 | AY526465 | MG665226 | AY624172 | JQ425687 | - | - |
| Cordyceps cateniobliqua | CBS 153.83 | AY526466 | - | AY624173 | JQ425688 | - | MG665236 |
| Cordyceps cf. pruinosa | EFCC 5197 | EF468965 | EF468820 | - | EF468760 | EF468868 | - |
| Cordyceps cf. pruinosa | NHJ 10627 | EF468967 | EF468822 | - | EF468763 | EF468870 | - |
| Cordyceps cylindrica | BUN 509 | MH879645 | MH879597 | - | - | - | - |
| Cordyceps cicadae | RCEF HP090724-31 | MF416605 | MF416552 | - | MF416496 | MF416653 | MF416447 |
| Beauveria brongniartii | BCC 16585 | JF415951 | JF415967 | JN415967 | JF416009 | JN049885 | JF415991 |
| Metacordyceps taii | ARSEF 5714 | AF543763 | AF543787 | JN049829 | AF543775 | DQ522383 | DQ522434 |
| Orbiocrella petchii | NHJ 6209 | EU369104 | EU369039 | JN049861 | EU369023 | EU369061 | EU369081 |
| Aschersonia confluence | BCC 7961 | DQ372100 | DQ384947 | JN049841 | DQ384976 | DQ384998 | DQ452465 |
| Virdispora diparietispora | CBS 102797 | AY489703 | AY489735 | JN049838 | AY489630 | AY489668 | DQ522471 |
| Ophiocordyceps rhizoidea | NHJ 12522 | EF468970 | EF468825 | JN049857 | EF468764 | EF468873 | EF468923 |
| Verticillium epiphytum | CBS 384.81 | AF339596 | AF339547 | - | DQ522361 | DQ522409 | DQ522469 |
| Rotiferophthora angustispora | CBS 101437 | AF339584 | AF339535 | AJ292412 | AF543776 | DQ522402 | DQ522460 |
| Torrubiella wallacei | CBS 101237 | AY184978 | AY184967 | NR111267 | EF469073 | EF469102 | EF469119 |
| Hymenostilbe aurantiaca | OSC 128578 | DQ522556 | DQ518770 | JN049833 | DQ522345 | DQ522391 | DQ522445 |
| Metarhizium flavoviride | ARSEF 2037 | AF339580 | AF339531 | AF138271 | DQ522353 | DQ522400 | DQ522454 |
| Lecanicilliun psalliotae | CBS 532.81 | AF339609 | AF339560 | JN049846 | EF469067 | EF469096 | EF469112 |
注:-:无
Note: -: Null.
1.2.6 不同培养基对菌株生长速率的影响:将分离的菌株驯化培养,直至菌落为规则圆形、直径约为60.0mm时,用7.0mm打孔器沿菌落边缘打孔;再将菌碟分别接种于PDA、1/4 SDAY和查氏培养基上,15℃恒温培养;每2d测量一次菌落直径(十字交叉法)[菌丝生长速度(mm/d)=菌落半径(mm)/菌丝生长天数(d)](Yin et al. 2009)测量至14d,各株菌每种培养基重复3次。
1.2.7 不同培养基对菌株的菌丝含水率的影响:收集各菌株同一培养基中菌丝,称量鲜重;55℃干燥至恒重、称量,计算菌丝含水率[菌丝含水率(%)=菌丝干重(g)/菌丝鲜重(g)×100]。
1.2.8 不同培养基对菌株的虫草酸和虫草素含量的影响:将干燥的菌丝粉碎,精确称取0.5g,装入10mL离心管中,以液料比20:1加入超纯水,400W、10min、常温超声提取(唐果等 2018)。将2.0、5.0、10.0、20.0、50.0μg/mL的标准品进行LC-MS检测;分别以虫草素和虫草酸浓度为横坐标、相应的峰面积为纵坐标建立标准曲线,并得出线性回归方程及R2。菌丝提取液上清过0.22μm微孔滤膜,进行LC-MS分析,根据标准曲线计算含量。
1.2.9 菌丝提取物检测条件:采用LC-MS(液质联用)的方法对菌丝提取物中的虫草酸和虫草素含量进行检测,仪器为LTQ XL mass spectrometer(Thermo Scientific,Waltham,MA,USA);LC检测条件:色谱柱:XTerra MS C18 Column(5μm,150mm×4.6mm;Waters Corp,Milford,MA,USA);梯度洗脱,流动相组成见表3;流速:0.5mL/min;MS检测条件:离子源:ESI(阳离子模式),喷雾电压:4.5kV,毛细管温度:275℃,鞘气流速:20(arb)N2,虫草素和虫草酸的质谱条件见表4(张铭雅等 2019)。
表3 LC流动相组成
Table 3
| 时间 Time (min) | 流动相A Mobile phase A (%) | 流动相B Mobile phase B (%) | 流动相C Mobile phase C (%) |
|---|---|---|---|
| 0 | 75 | 5 | 20 |
| 7 | 75 | 5 | 20 |
| 8 | 0 | 80 | 20 |
| 13 | 0 | 80 | 20 |
| 14 | 75 | 5 | 20 |
| 21 | 75 | 5 | 20 |
注:流动相A:超纯水;流动相B:乙腈;流动相C:乙酸
Note: Mobile phase A: Water; Mobile phase B: Acetonitrile; Mobile phase C: 0.5% acetic acid.
表4 虫草素和虫草酸的质谱条件
Table 4
| 化合物名称 Compound | 前体离子 Precursor ion [M+H]+ (m/z) | 质核比 Product ion (m/z) | 激发能量 Collision energy (eV) |
|---|---|---|---|
| 虫草酸 Cordycepic acid | 183 | 69 (MS3) | 35 |
| 虫草素 Cordycepin | 252 | 136 (MS2) | 35 |
1.2.10 统计学分析:本研究采用Excel软件进行数据整理,采用SPSS 22.0软件进行统计处理,采用GraphPad Prism 8系统制图。
2 结果与分析
2.1 三株菌的形态学鉴定
通过对新鲜冬虫夏草样品的分离、纯化,最终获得3株外观、形态均不相同的虫生真菌,分别命名为QH 2019、GL 2019、YN 2019。
2.1.1 菌株QH 2019:从青海省玉树市采集的新鲜冬虫夏草样品中分离、纯化,菌株在15℃培养30d,菌落直径为85.0-90.0mm,菌落正面中间呈浅黄色、周边为白色、隆起,菌丝绒毛状、致密;菌落背面中间呈黄色、周边为白色,具放射状沟纹(图1A、1D)。菌丝无色、有隔、分支,直径0.5-3.0μm;瓶梗(3.0-5.0μm)基部膨大呈椭圆形,单生或由2-4个瓶梗组成分支状分生孢子梗(5.0-10.0μm);分生孢子(2.0-2.5)×(1.0-1.5)μm,球形至卵圆形,无色,链生(图2A-2C)。在组织培养瓶中培养60d,菌株QH 2019菌丝黄色、产生白色孢梗束(图3A、3E),见光后菌丝逐渐变为橙黄色(图3B、3F)。
图1
图1
三种真菌菌落形态
A、D:QH 2019正、反面;B、E:GL 2019正、反面;C、F:YN 2019正、反面
Fig. 1
The characteristic features of three fungi in petri dish.
A, D: Samsoniella hepiali QH 2019 obverse side and reverse side colony; B, E: Isaria farinosa GL 2019 obverse side and reverse side colony; C, F: Isaria fumosorosea YN 2019 obverse side and reverse side colony.
图2
图2
三种真菌的显微形态特征
A-C:QH 2019菌株;D-F:GL 2019菌株;G-I:YN 2019菌株. 标尺=10µm
Fig. 2
The microscopic features of three fungi.
A-C: Samsoniella hepiali QH 2019 strain; D-F: Isaria farinosa GL 2019 strain; G-I: Isaria fumosorosea YN 2019 strain. Bars=10μm.
图3
图3
三种真菌培养瓶中的形态特征
A、B、E、F:QH 2019菌株;C、G:GL 2019菌株;D、H:YN 2019菌株
Fig. 3
The characteristics of colonies of three fungi in culture bottles.
A, B, E, F: Samsoniella hepiali QH 2019 strain; C, G: Isaria farinosa GL 2019 strain; D, H: Isaria fumosorosea YN 2019 strain.
2.1.2 菌株GL 2019:从青海省果洛市采集的新鲜冬虫夏草样品中分离、纯化,菌株在15℃培养30d,菌落直径为85.0-90.0mm,菌落正面为均匀生长的白色、绒毛状菌丝,中间和边缘有孢梗束、白色至鸭黄色;菌落背面为白色、在菌碟周围呈橙黄色(图1B、1E)。菌丝无色、分隔,直径0.7-2.5μm;分生孢子梗长(100-300μm),从基质菌丝上生长,不规则分枝,上有2-4个瓶梗组成的轮生体,瓶梗(5.0-15.0)×(1.2-2.5)µm,基部膨大呈椭圆形、上端有明显变细的颈部;分生孢子(1.8-2.5)×(1.0-1.5)µm,球形至椭圆形,长链状(图2G-2I)。在组织培养瓶中培养60d,菌株GL 2019菌丝白色、产生白色孢梗束,见光后不变色(图3D、3H)。
2.1.3 菌株YN 2019:从云南省迪庆市采集的新鲜冬虫夏草样品中分离、纯化,菌株在15℃培养30d,菌落直径为80.0-85.0mm,菌落正面中央为白色、周围为肉红色,菌丝绒毛状、面附着有肉红色液滴状渗出物;菌落背面中间为黄色、周边为白色(图1C、1F)。菌丝无色、分隔,直径1.0-3.0μm;产孢结构复杂,分生孢子梗10.0-30.0μm,上有3-6个瓶梗组成的轮生体,瓶梗(2.5-4.0μm)基部显著膨大呈卵圆或椭圆形,向上有明显的细颈;分生孢子(3.0-3.5)×(1.0-2.0)μm,透明、光滑,梭形至椭圆,长链(图2G-2I)。在组织培养瓶中培养60d,菌株YN 2019菌丝白色,上有均匀的肉红色、珊瑚状孢梗束,孢梗束上附着酒红色渗出物(图3D、3H)。
根据以上形态学观察结果和寄主种类,并结合《中国真菌志·第43卷》和Mongkolsamrit(2018)的研究结果,初步鉴定菌株QH 2019为蝙蝠蛾拟青霉Samsoniella hepiali;菌株GL 2019为粉棒束孢Isaria farinosa (Holmsk.) Fr.,异命为粉拟青霉Paecilomyces farinosa (Holmsk. ex Gray) A.H.S. Br. & G. Sm.(蒋毅和姚一建 2003;代永东等 2015);菌株YN 2019为玫烟色棒束孢Isaria fumosorosea Wize。
2.2 两基因系统发育分析
以Aschersonia confluence BCC 7961为外群建立系统发育树,结果显示:菌株QH 2019与Samsoniella hepialid ICMM Cs-4 聚类在同一个小分支上,相似性为98%;菌株GL 2019与Isaria farinosa NHJ 08013聚类在同一个分支上,相似性为97%;菌株YN 2019与Cordyceps fumosorosea CBS 107.10聚类在同一个分支上,相似性为97%(图4)。
图4
图4
基于PhyloSuite构建的系统发育树
Fig. 4
Phylogenetic tree based on ITS, nrSSU, nrLSU, TEF, RPB1 and RPB2 sequences by using PhyloSuite.
2.3 不同培养基对菌株生长的影响
对3株菌在不同培养基上生长的菌丝进行直径和菌落形态观察,测量和观察结果见表5、图5、图6。GL 2019在3种培养基上均能正常生长,菌落直径表现为:PDA>1/4 SDAY>查氏培养基;菌株在PDA培养基上菌丝日生长速率最快,且与其他两种培养基差异显著,在1/4 SDAY和查氏培养基上无显著差异。QH 2019在3种培养基上均能正常生长,菌落直径表现为:1/4 SDAY>PDA>查氏培养基;菌株在1/4 SDAY培养基上菌丝日生长速率最快,且与其他两种培养基差异显著,在1/4 SDAY和查氏培养基上无显著差异。YN 2019在3种不同培养基上均能正常生长,菌落直径表现为:PDA>1/4 SDAY>查氏培养基;菌株在PDA培养基上菌丝日生长速率最快,且与其他两种培养基差异显著,在1/4 SDAY和查氏培养基上无显著差异。
表5 不同菌株在不同培养基上生长状况与测量结果
Table 5
| 菌株 Strain | 培养基名称 Medium type | 菌丝日生长速率 Mycelial growth rate (mm/d) | 菌落形态 Colonial morphology | 菌丝长势 Mycelial growth vigor |
|---|---|---|---|---|
| Samsoniella hepiali QH 2019 | PDA | 1.77±0.12 b | 菌落正面为白色;背面的中间为浅橘黄色,边缘为白色 The obverse side of colony was white; the middle of colony reverse side was light orange with a white edge | ++ |
| 1/4 SDAY | 1.94±0.55 a | 菌落正面中间为鸭黄色,边缘为白色;背面中间为黄色, 边缘为白色 The middle of the colony obverse side was yellow with a white edge; the reverse side was yellow with a white edge | +++ | |
| 查氏培养基 Czapek-Dox medium | 1.63±0.13 b | 菌落正面为鸭黄色,上有一层白色的气生菌丝, 背面为橘黄色,颜色较深 The obverse side of colony was yellow with a layer of white aerial mycelium and the reverse side was dark orange | + | |
| Isaria farinosa GL 2019 | PDA | 2.37±0.20 a | 菌落正面中间为鸭黄色且有孢梗束,边缘为白色; 背面为乳白色 The middle of colony obverse side was yellow with coremium, and its edge was white; the reverse side was milk white | ++ |
| 1/4 SDAY | 2.04±0.40 b | 菌落正面为白色,有少量孢梗束;背面为黄色 The obverse side of colony was white with coremium and reverse side was yellow | +++ | |
| 查氏培养基 Czapek-Dox medium | 1.92±0.18 b | 菌落正面为白色、边缘为肉色;背面为橘黄色 The obverse side of colony was white and the edge was flesh color; the reverse side was orange | + | |
| Isaria fumosorosea YN 2019 | PDA | 2.27±0.27 a | 菌落正面中间为肉红色,边缘为白色,孢梗束多; 背面为浅橘黄色,边缘为白色 The middle of colony obverse side was flesh color and its edge was white with thick coremium; the reverse side was light orange with a white edge | ++ |
| 1/4 SDAY | 1.89±0.16 b | 菌落正面为白色,中间有浅肉红色的孢梗束, 上面有少量外渗物;背面为黄色,边缘为白色 The obverse side of colony was white, and its middle was a light flesh color coremium covered with light exosmosis; the reverse side was yellow with a white edge | +++ | |
| 查氏培养基 Czapek-Dox medium | 1.78±0.40 b | 菌落正面为白色,无孢梗束;背面为橘黄色,边缘为白色 The obverse side of the colony was white without coremium; the reverse side was orange with a white edge | + |
注:“+”表示菌丝体稀疏、纤细,“++”表示菌丝较密、生长较壮,“+++”表示菌丝稠密、粗壮. 不同小写字母表示有显著差异,P<0.05. 下同
Note: “+” indicates that mycelia are sparse and slim, “++” indicates that mycelia are dense and strong, and “+++” indicates that mycelia are thick. Different lowercase letters are expressed as the significant level of 5%. The same below.
图5
图5
不同菌株在3种培养基上的菌落直径
Fig. 5
Colony diameter of different isolates grown on three media.
图6
图6
不同菌株在3种培养基上生长状况
A-F:QH 2019在PDA、1/4 SDAY、查氏培养基正、反面;G-L:GL 2019在PDA、1/4 SDAY、查氏培养基正、反面;M-R:YN 2019在PDA、1/4 SDAY、查氏培养基正、反面
Fig. 6
The growth characters of different isolates grown on three media.
A-F: Obverse and reverse side of colony of QH 2019 on PDA, 1/4 SDAY, and Czapek-Dox medium; G-L: Obverse and reverse side of colony of GL 2019 on PDA, 1/4 SDAY, and Czapek-Dox medium; M-R: Obverse and reverse side of colony of YN 2019 on PDA, 1/4 SDAY, and Czapek-Dox medium.
2.4 不同培养基对菌株含水率、虫草素和虫草酸含量的影响
分别对虫草素和虫草酸标样进行LC-MS测定,可知虫草素的保留时间为:5.50min,标准曲线为:y=181744x,R2=0.9993;虫草酸的保留时间为:3.00min,标准曲线为:y=169.591x,R2=0.9936。不同菌株在3种培养基上含水率、虫草素和虫草酸含量见表6。
表6 不同菌株在不同培养基上含水率、虫草素和虫草酸含量
Table 6
| 菌株 Strain | 培养基种类 Medium | 菌丝含水率 Mycelial water content (%) | 虫草素含量 Cordycepin content (mg/g) | 虫草酸含量 Cordyceps acid content (mg/g) |
|---|---|---|---|---|
| QH 2019 | PDA | 85.91±1.25b | 0.47±0.022a | 3.24±0.021a |
| 1/4 SDAY | 91.90±1.22a | 0.054 ±0.014b | 1.27±0.060c | |
| 查氏培养基 Czapek-Dox medium | 90.83±1.00a | 0.057±0.0016b | 1.75±0.026b | |
| GL 2019 | PDA | 88.34±2.00a | 0.23±0.013a | 6.92±0.019a |
| 1/4 SDAY | 86.97±0.13a | 0.051±0.011c | 2.47±0.011c | |
| 查氏培养基 Czapek-Dox medium | 82.49±1.30b | 0.073±0.0067b | 5.19±0.012b | |
| YN 2019 | PDA | 84.40±2.18b | 0.50±0.012a | 11.32±0.16a |
| 1/4 SDAY | 95.23±1.65a | 0.11±0.011b | 1.25±0.011c | |
| 查氏培养基 Czapek-Dox medium | 92.60±0.57a | 0.021±0.0006c | 1.70±0.010b |
QH 2019在PDA上菌丝含水率最低,虫草素和虫草酸含量最高,与其他两种培养基差异显著;菌株在1/4 SDAY培养基和查氏培养基上的菌丝含水率与虫草素含量物明显差异,但虫草酸含量差异显著。
GL 2019在查氏培养基上菌丝含水率最低,但虫草素与虫草酸含量最低,与其他两种培养基差异显著;菌株在PDA培养基上菌丝含水率最高、但与1/4 SDAY培养基无明显差异,虫草素和虫草酸含量最高,与1/4 SDAY培养基有显著差异。
YN 2019在PDA上菌丝含水率最低,虫草素和虫草酸含量最高,与其他两种培养基有显著差异;菌株在1/4 SDAY培养基和查氏培养基上的菌丝含水率差异不明显,但虫草素和虫草酸含量差异显著。
3 讨论
研究表明蝙蝠蛾拟青霉可从新鲜冬虫夏草上分离,与冬虫夏草有相似的活性物质和功效(张羽等 2019),已被开发成药物金水宝,2000年列入《中国药典》(赵小惠等 2020),具有很好的药用开发前景;粉棒束孢的地理分布和来源广泛,从昆虫、植物、土壤和其他真菌中均可分离获得(刘飞 2018);玫烟色棒束孢可以从土壤(Shimizu et al. 2008)、僵虫上分离获得。本研究对冬虫夏草鲜品进行虫生真菌的分离,通过形态学及构建系统发育树鉴定发现,菌株QH 2019为蝙蝠蛾拟青霉,菌株GL 2019为粉棒束孢,YN 2019为玫烟色棒束孢。
本研究比较了从冬虫夏草鲜品上分离的3株虫生真菌的培养基类型与菌株生长状况及菌丝中活性物质虫草素、虫草酸含量的关系,筛选出虫草素和虫草酸含量高的菌株YN 2019,有望作为新的药用资源。这不仅为深入研究并获得虫草素和虫草酸高产菌株提供了新的材料,也为合理利用冬虫夏草资源、有效挽回人们对野生冬虫夏草资源及其生境的掠夺式破坏提供了可选择的途径。
参考文献
The protective effect of Cordyceps sinensis extract on cerebral ischemic injury via modulating the mitochondrial respiratory chain and inhibiting the mitochondrial apoptotic pathway
DOI:10.1016/j.biopha.2020.109834 URL [本文引用: 1]
A multilocus phylogeny of the Metarhizium anisopliae lineage
Metarhizium anisopliae, the type species of the anamorph entomopathogenic genus Metarhizium, is currently composed of four varieties, including the type variety, and had been demonstrated to be closely related to M. taii, M. pingshaense and M. guizhouense. In this study we evaluate phylogenetic relationships within the M. anisopliae complex, identify monophyletic lineages and clarify the species taxonomy. To this end we have employed a multigene phylogenetic approach using near-complete sequences from nuclear encoded EF-1alpha, RPB1, RPB2 and beta-tubulin gene regions and evaluated the morphology of these taxa, including ex-type isolates whenever possible. The phylogenetic and in some cases morphological evidence supports the monophyly of nine terminal taxa in the M. anisopliae complex that we recognize as species. We propose to recognize at species rank M. anisopliae, M. guizhouense, M. pingshaense, M. acridum stat. nov., M. lepidiotae stat. nov. and M. majus stat. nov. In addition we describe the new species M. globosum and M. robertsii, resurrect the name M. brunneum and show that M. taii is a later synonym of M. guizhouense.
A comparative study on 5hmC targeting regulation of neurons in AD mice by several natural compounds
Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus
Stachybotrys chartarum is an asexually reproducing fungus commonly isolated from soil and litter that is also known to occur in indoor environments and is implicated as the cause of serious illness and even death in humans. Despite its economic importance, higher level phylogenetic relationships of Stachybotrys have not been determined nor has a sexual state for S. chartarum been reported. DNA sequences from four nuclear and one mitochondrial gene were analyzed to determine the ordinal and familial placement of Stachybotrys within the Euascomycota. These data reveal that species of Stachybotrys including S. chartarum, S. albipes, for which the sexual state Melanopsamma pomiformis is reported, species of Myrothecium, and two other tropical hypocrealean species form a previously unknown monophyletic lineage within the Hypocreales. These results suggest that Stachybotrys and Myrothecium are closely related and share characteristics with other hypocrealean fungi. In addition, S. chartarum may have a sexual state in nature that consists of small, black, fleshy perithecia similar to Melanopsamma.
Anti-hepatic fibrosis mechanism of cordyceps polysaccharide
Genetic differentiation of an entomogenous fungus Isaria farinosa in Yunnan, China
Some active components, free radical scavenging activity and anti-Candida albicans activity of the fermentation broth of Hirsutella sinensis
Isolation and identification of sedative and hypnotic compound from the fermentation broth of Hirsutella sinensis
Taxonomy and phylogeny of Cordycipitaceae from Vietnam
Assessment of prokaryote to eukaryote ratios in environmental samples by SSU rDNA length polymorphism
DOI:10.1007/s10482-019-01327-y URL [本文引用: 1]
Improvement and production optimization of mycelia and cordycepin by a newly isolated Paecilomyces hepiali
Study on therapeutic effect of cordycepin on collagen-induced arthritis in mice and immune regulation mechanism
NMR and IR analysis of natural substances isolated from Cordyceps medicinal mushrooms
Comparison of bioactive constituents and effects on gut microbiota by in vitro fermentation between Ophicordyceps sinensis and Cordyceps militaris
DOI:10.1016/j.jff.2020.103901 URL [本文引用: 1]
Anamorphic fungi related o Cordyceps sinensis
Biotransformation of ginsenoside Rb1 with wild Cordyceps sinensis and Ascomycota sp. and its antihyperlipidemic effects on the diet-induced cholesterol of zebrafish
Anti-inflammation activity of exopolysaccharides produced by a medicinal fungus Cordyceps sinensis Cs-HK1 in cell and animal models
DOI:10.1016/j.ijbiomac.2020.02.022 URL [本文引用: 1]
Main biological characteristics of Isaria farinosa and its omics analysis of responses to altitude changes
Identification of seven wild cordycipitoid fungal strains and inhibiting activities of their mycelium ethanol extract against HepG2 cells
Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit
In an effort to establish a suitable alternative to the widely used 18S rRNA system for molecular systematics of fungi, we examined the nuclear gene RPB2, encoding the second largest subunit of RNA polymerase II. Because RPB2 is a single-copy gene of large size with a modest rate of evolutionary change, it provides good phylogenetic resolution of Ascomycota. While the RPB2 and 18S rDNA phylogenies were highly congruent, the RPB2 phylogeny did result in much higher bootstrap support for all the deeper branches within the orders and for several branches between orders of the Ascomycota. There are several strongly supported phylogenetic conclusions. The Ascomycota is composed of three major lineages: Archiascomycetes, Saccharomycetales, and Euascomycetes. Within the Euascomycetes, plectomycetes, and pyrenomycetes are monophyletic groups, and the Pleosporales and Dothideales are distinct sister groups within the Loculoascomycetes. We confirm the placement of Neolecta within the Archiascomycetes, suggesting that fruiting body formation and forcible discharge of ascospores were characters gained early in the evolution of the Ascomycota. These findings show that a slowly evolving protein-coding gene such as RPB2 is useful for diagnosing phylogenetic relationships among fungi.
Elevational distribution and morphological attributes of the entomopathogenic fungi from forests of the Qinling Mountains in China
DOI:10.1007/s00253-017-8651-4 URL [本文引用: 1]
Disentangling cryptic species with isaria-like morphs in Cordycipitaceae
DOI:10.1080/00275514.2018.1446651
PMID:29863995
[本文引用: 1]
A new genus and eight new species, all with isaria-like phialides, are described in Cordycipitaceae from Thailand. The new genus, Samsoniella, is segregated from Akanthomyces based on morphological and molecular evidence. Samsoniella differs from Akanthomyces in producing orange cylindrical to clavate stromata with superficial perithecia and orange conidiophores with isaria-like phialides and white to cream conidia. A new combination for CBS 240.32, originally identified as Paecilomyces farinosus (Isaria farinosa), and CBS 262.58, originally identified as Penicillium alboaurantium, respectively, is made in Samsoniella. Two new species, Samsoniella aurantia and S. inthanonensis, are described from lepidopteran larvae. Two new species of Cordyceps, C. blackwelliae and C. lepidopterorum, were also found on coleopteran and lepidopteran larvae. Both produce isaria-like morphs with globose phialides and attenuated long necks and white mycelium in culture. The authors established a sexual-asexual link for Cordyceps javanica (= Isaria javanica) on lepidopteran larvae. Four new species, Akanthomyces kanyawimiae, A. sulphureus, A. thailandicus, and A. waltergamsii, were pathogenic on spiders, with some strains of A. kanyawimiae also found on unidentified insect larvae. These four species of Akanthomyces occur on the underside of leaves and produce white to cream white powdery conidia, whereas S. aurantia and S. inthanonensis were found in leaf litter and produce bright orange stromata and synnemata with white conidia. Another new combination, Akanthomyces ryukyuensis, is proposed. Phylogenetic analyses based on a combined data set comprising the nuc rDNA region encompassing the internal transcribed spacers 1 and 2 along with the 5.8S rDNA (ITS), nuc 28S rDNA (28S), partial sequences of translation elongation factor 1-α gene (TEF1), and the genes for RNA polymerase II largest (RPB1) and second-largest (RPB2) subunits strongly support the delimitation of these new species of Cordyceps, Akanthomyces, and in a new genus Samsoniella in Cordycipitaceae.
Cordyceps sinensis polysaccharide inhibits colon cancer cells growth by inducing apoptosis and autophagy flux blockage via mTOR signaling
DOI:10.1016/j.carbpol.2020.116113 URL [本文引用: 1]
Comparative analysis of cordycepic acid content in different growth stages
In vitro and in vivo study of Hirsutella sinensis extract on kidney injury
Electrophoretic karyotyping of the entomogenous fungus Paecilomyces fumosoroseus
DOI:10.1111/j.1472-765X.1993.tb01392.x URL [本文引用: 1]
Phylogenetic classification of Cordyceps and the clavicipitaceous fungi
DOI:10.3114/sim.2007.57.01 URL [本文引用: 1]
Optimization of extraction of cordycepin from Cordyceps pruinosa by response surface methodology
Identification of four entomogenous fungi and the inhibitory effect of their ethanol extracts on Hela cell
Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences
Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide
DOI:10.1016/j.fct.2004.12.008 URL [本文引用: 1]
Multigene phylogeny of the family Cordycipitaceae (Hypocreales): new taxa and the new systematic position of the Chinese cordycipitoid fungus Paecilomyces hepiali
DOI:10.1007/s13225-020-00457-3 URL [本文引用: 1]
Effect of Isaria felina on immune function of immunosuppressed mice
Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics
Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species
DOI:10.1007/s13225-019-00432-7 URL
Progress of several crucial aspects in the biological and ecological research on the Chinese caterpillar fungus, Ophiocordyceps sinensis
Studies on the Chinese species of the genus Hepialus and their geographical distribution
Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China
DOI:10.1094/PHYTO-99-5-0487
PMID:19351244
[本文引用: 1]
Fusarium asiaticum and F. graminearum are the primary causal agents of Fusarium head blight (FHB) of wheat in China. In this study, sensitivities of 159 F. asiaticum and F. graminearum isolates to a benzimidazole fungicide carbendazim (MBC) and to sterol demethylation inhibitors (DMIs) tebuconazole and prochloraz were determined. Among the 159 isolates, 9 were resistant to MBC and designated as MBC-R isolates. Three showed resistance to tebuconazole and prochloraz and designated as DMI-R isolates. There was no cross-resistance between MBC and DMI. Genetic analysis by microsatellite-primed polymerase chain reaction (PCR) showed that MBC-R or DMI-R isolates had different genotypes, which indicated that they originated from different wild-type parents. Analysis of two 14alpha-demethylase (cyp51) homologous genes (cyp51A and cyp51B) showed that the F. asiaticum isolates could be distinguished from F. graminearum isolates based on the sequence of cyp51A. Analysis of deduced amino acid sequence of cyp51A and cyp51B suggested that no mutations were associated with DMI resistance. Real-time PCR analysis showed that the DMI resistance was not related to the expression of cyp51A and cyp51B in F. asiaticum and F. graminearum, but expressions of both genes were induced greatly by the tebuconazole. Results of this study indicated that cyp51A would be an informative marker for analysis of population structure of F. asiaticum and F. graminearum, and the existence of homologous cyp51 genes in F. asiaticum and F. graminearum could provide new insights into DMI resistance in phytopathogenic fungi.
Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice
DOI:10.1016/j.carbpol.2020.115957 URL [本文引用: 1]
Simultaneous detection of cordycepin, D-mannitol, adenosine and inosine in Cordyceps militaris by HILIC-MS/MS
Therapeutical effect of MOG35-55 induced EAE by Hirsutella sinensis mycelium in mice. Chinese Archives of Traditional Chinese Medicine, 37(7):
Composition and acute toxicity analyses of fermentation filtrate of Paecilomyces hepiali
DNA barcoding identification of Paecilomyces hepiali and Jinshuibao capsules
Suitability and regionalization of Ophiocordyceps sinensis in the Tibetan Plateau
7株野生虫草菌的鉴定及其菌丝体醇提取物对HepG2细胞的抑制活性
HILIC-MS/MS技术同时检测蛹虫草中虫草素、虫草酸、腺苷和肌苷含量的方法学
中国被毛孢对MOG35-55诱导小鼠实验性自身免疫性脑脊髓炎的治疗作用
/
| 〈 |
|
〉 |








