[1] Yu C,Zhang Y,Claus H,et al. Ecological and environmental issues faced by a developing Tibet[J].Environmental Science and Technology,2012,46(4):1979-1980
[2] Bai L,Cirendunzhu,Pengcuociren,et al. Rapid warming in Tibet, China: public perception, response and coping resources in urban Lhasa[J/OL]. Environ Health,2013,12(1):71.doi:10.1186/1476-069X-12-71
[3] Yu H,Xu J,Okuto E,et al. Seasonal response of grasslands to climate change on the Tibetan Plateau[J/OL]. PLoS One, 2012,7(11):e49230. doi: 10.1371/journal.pone.0049230
[4] Hao Z,Ju Q,Jiang W,et al. Characteristics and Scenarios Projection of Climate Change on the Tibetan Plateau [J/OL]. The Scientific World Journal,2013,129793.doi:10.1155/2013/129793
[5] Gao J,Li X-L,Cheung A,et al. Degradation of wetlands on the Qinghai-Tibet Plateau: A comparison of the effectiveness of three indicators[J]. Journal of Mountain Science,2013,10(4):658-667
[6] Harris R B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes[J]. Journal of Arid Environments,2010,74(1):1-12
[7] Wen L,Dong S,Li Y,et al. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China[J/OL]. PLOS One,2013,8(3):e58432.doi:10.1371/journal.pone.0058432
[8] Yang Z,Guo H,Zhang J,et al. Stochastic and deterministic processes together determine alpine meadow plant community composition on the Tibetan Plateau[J]. Oecologia,2013,171(4):495-504
[9] Wen L,Dong S,Li Y,et al. The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau[J]. Plant Soil,2013,368(1-2):329-340
[10] Liu Y,Mu J,Niklas KJ,et al. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau[J]. New Phytology,2012,195(2):427-436
[11] Yu H,Luedeling E,Xu J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,07(51):22151-22156
[12] Chen G,Wu T. Responses of permafrost to climate change and their environmental significance,Qinghai-Tibet Plateau[J/OL]. Journal of Geophysical Research: Earth Surface,2007,112:F02S03.doi:10.1029/2006JF000631
[13] Du M, Kawashima S,Yonemura S, et al. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years[J]. Global and Planetary Change,2004,41(3-4):241-249
[14] Xin H. China's environmental challenges. A green fervor sweeps the Qinghai-Tibetan Plateau[J]. Science,2008,321(5889):663-665
[15] Wang H,Zhou X,Wan C,et al. Eco-environmental degradation in the northeastern margin of the Qinghai-Tibetan Plateau and comprehensive ecological protection planning[J]. Environmental Geology,2008,55(5):1135-1147
[16] Chen X W, Zhang X S, Li B L. The possible response of life zones in China under global climate change[J]. Global and Planetary Change,2003,38(3-4):327-337
[17] Menzel A, Sparks T H,Estrella N,et al. European phonological response to climate change matches the warming pattern [J]. Global Change Biology,2006,12(10):1969-1976
[18] Gao Y,Zhou X,Wang Q,et al. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau[J]. Science of Total Environment,2013,444:356-362
[19] Zhao D,Wu S,Yin Y. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China[J/OL]. PLOS One,2013,8(4):e60849.doi:10.1371/journal.pone.0060849
[20] Gao Q Z,Wan YF,Li Y E,et al. Grassland net primary productivity and its spatiotemporal distribution in northern Tibet: a study with CASA model[J]. Chinese Journal Applied Ecology,2007,18(11):2526-2532
[21] Fan J W,Shao Q Q,Liu JY,et al. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China[J]. Environmental Monitoring and Assessment,2010, 70(1-4):571-584
[22] 侯宪宽,芦光新,董全民,等. 施肥对环青海湖地区草甸群落生长的影响[J]. 草地学报,2014,22(3):488-493
[23] Henry G H R,Molau U. Tundra plants and climate change: the International Tundra Experiment (ITEX)[J]. Global Change Biology,1997,3(Suppl.1):1-9
[24] Kitajima M,Butler W L. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone[J]. Biochimica et Biophysica Acta,1975,376(1):105-115
[25] Genty B,Briantais J-M,Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta,1989,990(1):87-92
[26] Schreiber U,Schliwa U,Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynthesis Research,1986,10(1):51-62
[27] Kramer D M,Johnson G, Kiirats O,et al. New fluorescence parameters for the determination of QA redox state and excitation fluxes[J]. Photosynthesis Research,2004,79(2):209-218
[28] 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报,1999,16(4):444-448
[29] Boxman A W,Roelofs J G M. Some effects of nitrate versus ammonium nutrition on the nutrient fluxes in Pinus sylvestris seedlings. Effects of mycorrhizal infection[J]. Canadian Journal of Botany,1988,66(6):1091-1097
[30] Bassirirad H,Griffin K L, Reynolds J F, et al. Changes in root NH4+ and NO3- absorption rates of loblolly and pondero sapine in response to CO2 enrichment[J]. Plant and Soil,1997,190(1):1-9
[31] Scherer H W,MacKown C T. Dry matter accumulation, uptake and chemical composition of tobacco grown with different N sources at two levels of K[J]. Journal of Plant Nutrtion,1987,10(1):10-14
[32] Marshner H. Mineral nutrition of higher plants[M]. New York:Academic Press,1990:211
[33] Sunderhaus S,Dudkina N V,Jnsch L,et al. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants[J]. Journal of Biological Chemistry,2006,281(10):6482-6488 |