[1] DISSANAYAKA DMSB,GHAHREMANI M,SIEBERS M,et al. Recent insights into the metabolic adaptations of phosphorus-deprived plants[J]. Journal of Experimental Botany,2020,72(2):199-223 [2] 韩蓉蓉,文亦芾,史亮涛. 牧草磷素营养及其耐低磷特性[J]. 草业科学,2014,31(8):1549-1555 [3] CONG WF,SURIYAGODA LDB,LAMBERS H. Tightening the phosphorus cycle through phosphorus-efficient crop genotypes[J]. Trends in Plant Science,2020,25(10):967-975 [4] LÓPEZ-ARREDONDO DL,LEYVA-GONZÁLEZ MA,GONZÁLEZ-MORALES SI,et al. Phosphate nutrition:Improving low-phosphate tolerance in crops[J]. The Annual Review of Plant Biology,2014,65:95-123 [5] TIAN J,WANG X,TONG Y,et al. Bioengineering and management for efficient phosphorus utilization in crops and pastures[J]. Current Opinion in Biotechnology,2012,23(6):866-871 [6] MAGALHAES J V,DE SOUSA S M,GUIMARAES C T,et al. The role of root morphology and architecture in phosphorus acquisition:Physiological,genetic,and molecular basis[M]//Hossain MA,Kamiya T,Burritt DJ,Tran LSP,Fujiwara T,eds. Plant Macronutrient Use Efficiency. Elsevier Inc.,2017:123-147 [7] DISSANAYAKA DMSB,PLAXTON WC,LAMBERS H,et al. Molecular mechanisms underpinning phosphorus-use efficiency in rice[J]. Plant Cell & Environment,2018,41:1483-1496 [8] MEHRA P,PANDEY BK,GIRI J. Comparative morphophysiological analyses and molecular profiling reveal Pi-efficient strategies of a traditional rice genotype[J]. Frontiers in Plant Science,2016,6(73):1184 [9] LAMBERS H,CAWTHRAY GR,GIAVALISCO P,et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency[J]. New Phytologist,2012,196:1098-1108 [10] 缪秋韵,高雯,李杰,等. 脂质组学分析方法进展及其在中药研究中的应用[J]. 中国中药杂志,2019,44(9):7 [11] 刘壮,刘国道,高玲,等. 山蚂蝗属13种热带绿肥植物营养元素含量及品质评价[J]. 中国农学通报,2009,25(04):145-148 [12] 吴瑶,傅本重,杨永进,等. 药用山蚂蝗属植物的化学成分和药理活性研究进展[J]. 现代生物医学进展,2016,16(26):5191-5195 [13] MURPHY J,RILEY JP. A modified single solution method for the determination of phosphate in natural waters[J]. Analytica Chimica Acta,1962(27):31-36 [14] CHAUHAN MZ,VALENCIA AK,PIQUERAS MC,et al. Optic nerve lipidomics reveal impaired glucosylsphingosine lipids pathway in glaucoma[J]. Biochemistry and Molecular Biology,2019(60):1789-1798 [15] MCLOUGHLIN F,AUGUSTINE RC,MARSHALL RS,et al. Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover[J]. Nature Plants,2018(4):1056-1070 [16] 李丹竹,曾宁波,张志飞,等. 渍水胁迫对不同磷水平下紫花苜蓿根系生长的影响[J]. 草地学报,2020,28(6):1563-1571 [17] LUO J,LIU Y,ZHANG H,et al. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency[J]. BMC Plant Biology,2020(20):85 [18] XU L,ZHAO H,WAN R,et al. Identification of vacuolar phosphate efflux transporters in land plants[J]. Nature Plants,2019(5):84-94 [19] MO X,ZHANG M,LIANG C,et al. Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes[J]. Plant Physiology and Biochemistry,2019(139):697-706 [20] MVLLER J,GÖDDE V,NIEHAUS K,et al. Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency[J]. Frontiers in Plant Science,2015(6):e0129520 [21] LIU D. Root developmental responses to phosphorus nutrition[J]. Journal of Integrative Plant Biology,2021,63(6):1065-1090 [22] PANT BD,PANT P,ERBAN A,et al. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis,and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation[J]. Plant Cell & Environment,2015,38(1):172-187 [23] NAKAMURA Y. Phosphate starvation and membrane lipid remodeling in seed plants[J]. Progress in Lipid Research,2013(52):43-50 [24] 彭玺如. 基于组学分析木豆根系代谢谱与磷酯酶基因表达谱对低磷胁迫的响应[D]. 海南:海海南南大学,2021 [25] 丁冬. 低磷胁迫下玉米幼苗根系生理及膜脂代谢分子调控研究[D]. 大庆:黑龙江八一农垦大学,2020 [26] GAUDE N,NAKAMURA Y,WOLF-RVDIGER S,et al. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis[J]. The Plant Journal,2008(56):28-39 [27] ANDERSSON MX,STRIDH MH,LARSSON KE,et al. Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol[J]. FEBS Letters,2003(537):128-132 [28] HENRIK TM,HELLGREN LI,AKE W,et al. Lipid asymmetry in plant plasma membranes:phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet[J]. The FASEB Journal,2010,24(4):1128-1138 |