[1] MARASCO R,MOSQUEIRA M J,FUSI M,et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host[J]. Microbiome,2018,6(1):1-18 [2] 邓杰文,石杨,李斌,等. 微生物在沙化土壤修复中的应用研究进展[J]. 应用与环境生物学报,2022,28(5):1367-1374 [3] NDOUR P M S,HEULIN T,ACHOUAK W,et al. The rhizosheath:from desert plants adaptation to crop breeding[J]. Plant and Soil,2020,456(1):1-13 [4] VOLKENS G. Die flora der aegyptisch-arabischen wtiste auf grundlage anatomisch-physiologischer forschungen[M]. Berlin:Gerbruger Borntraeger,1887:20 [5] HARTNETT D C,WILSON G W,OTT J P,et al. Variation in root system traits among African semi-arid savanna grasses:Implications for drought tolerance[J]. Austral Ecology,2013,38(4):383-392 [6] BROWN L K,GEORGE T S,NEUGEBAUER K,et al. The rhizosheath-a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms[J]. Plant and Soil,2017,418(1):115-128 [7] BASIRAT M,MOUSAVI S M,ABBASZADEH S,et al. The rhizosheath:a potential root trait helping plants to tolerate drought stress[J]. Plant and Soil,2019,445(1):565-575 [8] MAHMOOD T,MEHNAZ S,FLEISCHMANN F,et al. Soil sterilization effects on root growth and formation of rhizosheaths in wheat seedlings[J]. Pedobiologia,2014,57(3):123-130 [9] 安晶,吴楠,张元明. 沙土灭菌对羽毛针禾(Stipagrostis pennata)种子萌发、幼苗生长及根鞘形成的影响[J]. 中国沙漠,2016,36(02):399-405 [10] HALING R E,RICHARDSON A E,CULVENOR R A,et al. Root morphology,root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity[J]. Plant and Soil,2010,335(1):457-468 [11] ASLAM M M,KARANJA J K,DODD I C,et al. Rhizosheath:An adaptive root trait to improve plant tolerance to phosphorus and water deficits?[J]. Plant,Cell & Environment,2022,45(10):2861-2874 [12] LIU T,CHEN M,ZHANG Y,et al. Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight[J]. Planta,2019,250(4):1355-1369 [13] WANG T,LI C,WU Z,et al. Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation[J]. Frontiers in Plant Science,2017(8):1121 [14] 官纪元. 氮、磷胁迫对刺梨根系的影响及其与内源激素含量的关系[D]. 贵阳:贵州大学,2018:9-11 [15] 赵文武,赵鑫,谢文辉,等. 干旱胁迫下白刺花幼苗根系生长和生理特性的响应[J]. 草地学报,2023,31(1):120-129 [16] 李桂俊. 赤霉素对细胞壁组分以及拟南芥主根伸长的影响[D]. 南京:南京农业大学,2015:6 [17] 陈有军,董全民,周青平. 不同水分和土壤处理对糙毛以礼草苗期根系构型和根鞘形成的影响[J]. 草业学报,2020,29(3):60-69 [18] 李春越,薛英龙,王益,等. 长期施肥对黄土旱塬农田土壤氮素生理菌群和解磷菌的影响[J]. 生态学杂志,2020,39(11):3658-3667 [19] 杜欢,马彤彤,郭帅,等. 大麦近等基因系苗期根系形态及叶片渗透调节物质对PEG胁迫的响应[J]. 中国农业科学,2017,50(13):2423-2432 [20] DELHAIZE E,JAMES R A,RYAN P R. Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil[J]. New Phytologist,2012,195(3):609-619 [21] 白宝璋,金锦子,白崧,等. 玉米根系活力TTC测定法的改良[J]. 玉米科学,1994(4):44-47 [22] 王荣. 苹果砧木茎源根系发生中次生代谢、内源激素和转录组差异分析[D]. 泰安:山东农业大学,2016:23 [23] QI Y,WEI W,CHEN C,et al. Plant root-shoot biomass allocation over diverse biomes:A global synthesis[J]. Global Ecology and Conservation,2019,18:e00606 [24] 倪国荣,潘晓华,石庆华,等. 灭菌方式对红壤性水稻土养分及水稻生长的影响[J]. 核农学报,2018,32(12):2431-2437 [25] 武春成,曹霞,李天来. 黄瓜连作土壤及营养基质热处理的生物效应研究[J]. 核农学报,2016,30(6):1178-1185 [26] 王志. 丛枝菌根真菌及根际促生菌对蒲公英生长和铬耐性的影响[D]. 南昌:江西农业大学,2019:8-10 [27] 闫春娟,王文斌,孙旭刚,等. 干旱胁迫对大豆根系发育影响初报[J]. 大豆科学,2012,31(6):924-926 [28] BACHER H,SHARABY Y,WALIA H,et al. Modifying root-to-shoot ratio improves root water influxes in wheat under drought stress[J]. Journal of Experimental Botany,2021,73(5):1643-1654 [29] 张咏梅,胡海英,白小明,等. 多年生黑麦草、雀麦根系形态和生长对土壤干旱的适应性[J]. 中国生态农业学报(中英文),2022,30(11):1784-1794 [30] 樊娅萍,宋柏权,陈芳玲,等. 设施土壤灭菌与摩西球囊霉对黄瓜幼苗生长及养分吸收的影响[J]. 南方农业学报,2022,53(6):1704-1712 [31] 赵国靖. 黄土丘陵区两乡土草混播下根系形态特征及其对土壤水分变化的响应[D]. 杨凌:西北农林科技大学,2014:11-22 [32] 肖万欣,王延波,叶雨盛,等.生殖生长期干旱对不同耐旱型玉米自交系根系性状及产量的影响[J].玉米科学,2020,28(5):93-101 [33] LIU T Y,YE N,SONG T,et al. Rhizosheath formation and involvement in foxtail millet (Setaria italica) root growth under drought stress[J]. Journal of Integrative Plant Biology,2019,61(4):449-462 [34] 王素素,杜国栋,吕德国. 土壤高温处理对连作草莓根系呼吸代谢及植株发育的影响[J]. 果树学报,2011,28(2):234-239 [35] 王功帅,马子清,潘凤兵,等. 连作对土壤微生物及平邑甜茶幼苗氮吸收、分配和利用的影响[J]. 植物营养与肥料学报,2019,25(3):481-488 [36] 闫宁,战宇,谢昊臻,等. 不同改土方式对连作人参生长发育的影响[J]. 江苏农业科学,2022,50(6):120-125 [37] 唐利华,樊华,李阳阳,等. 甜菜叶片、根系含水量及根系活力对干旱胁迫的反应[J]. 新疆农垦科技,2019,42(1):8-10 [38] 王秀波,上官周平. 干旱胁迫下氮素对不同基因型小麦根系活力和生长的调控[J]. 麦类作物学报,2017,37(6):820-827 [39] 杨传杰,罗毅,孙林,等. 水分胁迫对覆膜滴灌棉花根系活力和叶片生理的影响[J]. 干旱区研究,2012,29(5):802-810 [40] 卢玉秋. 微生物群落对作物生长及植物激素的影响[D]. 北京:中国农业科学院,2019:24-42 [41] ZHANG Q M,GONG M G,LIU K Y,et al. Rhizoglomus intraradices improves plant growth,root morphology and phytohormone balance of Robinia pseudoacacia in arsenic-contaminated soils[J]. Frontiers in Microbiology,2020,11:1428 [42] 陈传胜,黄从军,赵厚本,等. 南岭小坑常绿阔叶林土壤脱落酸分解特征[J]. 生态环境学报,2015,24(5):767-771 [43] 孙韵雅,陈佳,王悦,等. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报,2020,28(5):1203-1215 [44] 李跃,李振松,苗丽宏,等. 不同生育期干旱对紫花苜蓿生长和根系ABA含量的影响[J]. 草地学报,2017,25(6):1245-1250 [45] 王晓娇,蒙美莲,曹春梅,等. 水分胁迫对马铃薯出苗期根系生理特性及内源激素IAA、ABA含量的影响[J]. 东北师大学报(自然科学版),2018,50(2):103-109 [46] 闫志利,轩春香,牛俊义,等. 干旱胁迫及复水对豌豆根系内源激素含量的影响[J]. 中国生态农业学报,2009,17(2):297-301 [47] 刘美玲. 干旱胁迫下吲哚丁酸钾对大豆苗期生长的调控效应[D]. 大庆:黑龙江八一农垦大学,2021:44-47 [48] 赵领军,赵善仓. 干旱胁迫下苹果根系内源激素含量的变化[J]. 山东农业科学,2007(2):48-49 [49] 王清泉,陈云,谢虹,等. 干旱和氮素交互作用对玉米叶片水势、气孔导度及根部ABA与CTK合成的影响[J]. 中国农学通报,2004(3):20-21 [50] 刘碧云,叶龙华. 干旱胁迫对植物光合特性及激素含量的影响[J]. 防护林科技,2016(5):64-66 |