[1] 吴青柏,施斌. 论青藏铁路修筑中的冻土环境保护问题[J]. 水文地质工程地质,2002(4):14-16,20 [2] 赵秋晓. 青藏铁路沿线高寒草地植被盖度变化的遥感分析[D]. 北京:中国地质大学,2015:2-7 [3] 陈辉,李双成,郑度. 青藏公路铁路沿线生态系统特征及道路修建对其影响[J]. 山地学报,2003(5):559-567 [4] 张玉清. 青藏铁路建设对青藏高原生态环境的负面影响研究[J]. 水土保持通报,2002(4):50-53 [5] LUO L,MA W,ZHUANG Y,et al. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor[J]. Ecological Indicators,2018,93:24-35 [6] SANTOS S S,ASK K A,VESTERGARD M,et al. Specialized microbiomes facilitate natural rhizosphere microbiome interactions counteracting high salinity stress in plants[J]. Environmental and Experimental Botany,2021,186:104430 [7] WU X,RENSING C,HAN D,et al. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes[J]. mSystems,2022,7(1):e01107-21 [8] DELGADO-BAQUERIZO M,MAESTRE F T,REICH P B,et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications,2016,7(1):10541 [9] BAGCHI S,RITCHIE M E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition [J]. Ecology Letters,2010,13(8):959-968 [10] 竹兰萍,徐飞,王佳颖,等. 嘉陵江滨岸带不同土地利用类型土壤真菌群落结构与功能多样性[J]. 环境科学,2022,43(12):5808-5818 [11] 秦家凤,李阳,刘广全,等. 煤矿复垦区不同恢复年限沙棘人工林土壤真菌群落特征[J]. 土壤通报,2022,53(6):1413-1420 [12] 曹萍麟,陆梅,田昆,等. 纳帕海高原湿地不同干扰强度下土壤真菌的分布格局[J]. 植物生态学报,2014,38(11):1166-1173 [13] 刘敏,张涛,李龙,等. 旅游踩踏对梵净山植物根系真菌群落的影响[J]. 中国环境科学,2023,43(4):2017-2027 [14] 张相昱. 人为干扰对长白山苔原带地上植物多样性和土壤的影响研究[D]. 长春:吉林大学,2021:6 [15] 张志卿,艾应伟,杨雅云,等. 铁路边坡土壤微生物数量和酶活性研究[J]. 水土保持通报,2009,29(4):61-66 [16] 邱莉萍,刘军,王益权,等. 土壤酶活性与土壤肥力的关系研究[J]. 植物营养与肥料学报,2004(3):277-280 [17] 徐秋芳,姜培坤. 有机肥对毛竹林间及根区土壤生物化学性质的影响[J]. 浙江林学院学报,2000(4):22-26 [18] 张克弟,巨天珍,任艺彬,等. 宝天高速公路路域土壤微生物群落特征的比较研究[J]. 生态科学,2016,35(4):134-141 [19] 王永利. 康定城地质地球化学与人居环境风险性评价[D]. 成都:成都理工大学,2006:9-12 [20] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:30 [21] 于方明,姚亚威,谢冬煜,等. 泗顶矿区6种土地利用类型土壤微生物群落结构特征[J]. 中国环境科学,2020,40(5):2262-2269 [22] 赵成章,樊胜岳,殷翠琴,等. 祁连山区退化草地植被群落结构特征的研究[J]. 中国草地,2004(2):27-31,36 [23] 王敏,张鲜花,袁小强,等. 干扰程度对典型草原植物群落数量特征及物种多样性的影响[J]. 草原与草坪,2023,43(4):122-129,136 [24] 干友民,李志丹,王钦,等. 川西北亚高山草甸放牧退化演替研究[J]. 草地学报,2005,13(Sup):48-52 [25] 王婷,花蕊,楚彬,等. 高寒草原退化对植物群落及土壤理化性质的影响[J]. 草原与草坪,2019,39(4):65-71 [26] LYNCH J P. Steep,cheap and deep:an ideotype to optimize water and N acquisition by maize root systems[J]. Annals of Botany,2013,112(2):347-357 [27] VAN DER HEIJDEN M G A,BARDGETT R D,VAN STRAALEN N M. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters,2008,11(3):296-310 [28] 高凤如,巨天珍,杨斌,等. 路域和保护区油松林种间关联比较研究[J]. 应用与环境生物学报,2016,22(6):1031-1039 [29] 杨殿林,韩国栋,胡跃高,等. 放牧对贝加尔针茅草原群落植物多样性和生产力的影响[J]. 生态学杂志,2006(12):1470-1475 [30] 赵登亮. 放牧对克氏针茅草原群落的生态效应[D]. 呼和浩特:内蒙古大学,2010:1-2 [31] 史小金. 青藏铁路沿线植被变化特征与影响机制的研究[D]. 北京:中国地质大学,2018:35-36 [32] ILLINGS S A,ZIEGLER S E. Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2[J]. Global Change Biology,2005,11(2):203-212 [33] 王明涛,雷变霞,赵玉红,等. 垂穗披碱草人工草地建植和管理措施对土壤真菌群落的影响[J]. 草地学报,2023,31(6):1728-1734 [34] 李海云,姚拓,高亚敏,等. 退化高寒草地土壤真菌群落与土壤环境因子间相互关系[J]. 微生物学报,2019,59(4):678-688 [35] 王磊,宋乃平,陈林,等. 荒漠草原土壤粗质化和养分减少伴随多年生群落转变为一年生群落[J]. 草业学报,2020,29(11):183-189 [36] 温瑀,穆立蔷. 横头山干线公路的建设对沿线土壤养分和植被的干扰[J]. 西北林学院学报,2013,28(4):26-31,37 [37] 李侠,马晓慧,杜世杰,等. 不同利用方式土地可培养微生物数量及其垂直分布特征[J]. 江苏农业科学,2021,49(24):246-250 [38] CHEN L L,XU H B,SUN J H,et al. The short-term impacts of soil disturbance on soil microbial community in a degraded Leymus chinensis steppe,North China[J]. Soil & Tillage Research,2021,213:105112 [39] 阳祥,李先德,刘吉龙,等. 不同轮作模式的土壤真菌群落结构及功能特征分析[J]. 环境科学学报,2022,42(4):432-442 [40] 徐林芳,米媛婷,柳兰洲,等. 内蒙古不同类型草原土壤真菌群落结构及其影响因子的研究[J]. 草地学报,2023,31(7):1977-1987 [41] GUTIÉRREZ-GIRÓN A,GAVILÁN R G. Spatial patterns and interspecific relations analysis help to better understand species distribution patterns in a Mediterranean high mountain grassland[J]. Plant Ecology,2010,210(1):137-151 [42] SONG H B,BAU T. Conocybe section pilosellae in China:Reconciliation of taxonomy and phylogeny reveals seven new species and a new record[J]. Journal of Fungi,2023,9(9):924 [43] VILLANUEVA P,VÁSQUEZ G,GIL-DURÁN C,et al. Description of the first four species of the genus Pseudogymnoascus from Antarctica[J]. Frontiers in Microbiology,2021,12:713189 [44] LEUSHKIN E V,LOGACHEVA M D,PENIN A A,et al. Comparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages[J]. BMC Genomics,2015,16(1):400 [45] 王晓春,高婷. 盐碱地紫花苜蓿根际土壤真菌多样性分析[J]. 农业与技术,2023,43(24):9-12 [46] CHEN Y L,CAO Y D,LIU S T. Effects of long-term mineral fertilizer application on soil nutrients,yield,and fungal community composition[J]. Eurasian Soil Science,2021,54(4):597-604 [47] PATRICK B,JOCHEN P Z,MARCO K,et al. Environmentally relevant fungicide levels modify fungal community composition and interactions but not functioning[J]. Environmental Pollution,2021,285:117234 [48] LI Y,WANG Z,LI T,et al. Wheat rhizosphere fungal community is affected by tillage and plant growth[J]. Agriculture,Ecosystems & Environment,2021,317:107475 [49] 王新军,陈学平,陈济丁,等. 丛枝菌根真菌在青藏高原路域植被恢复中的应用[J]. 交通运输研究,2021,7(2):115-121 [50] 王光州. 土壤微生物调节植物种间互作和多样性-生产力关系的机制[D]. 北京:中国农业大学,2018:2-3 [51] 韩金吉,沈小奥,杨帆,等. 丛枝菌根真菌(AMF)介导植物矿质元素吸收机制的研究进展[J]. 草地学报,2023,31(6):1609-1621 [52] 许彤彤. 氮沉降对松嫩盐碱斑块化草地植物群落动态及生态过程和功能恢复的影响[D]. 长春:东北师范大学,2022:81-82 [53] PÉREZ M,URCELAY C. Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types[J]. Mycorrhiza,2009,19(8):517-523 [54] SCHROEDER-MORENO M S,JANOS D P. Intra- and inter-specific density affects plant growth responses to arbuscular mycorrhizas[J]. Botany,2008,86(10):1180-1193 [55] JOHNSON L C,ANTONI W H D. Species-controlled Sphagnum decay on a South Swedish raised bog[J]. Oikos,1991,61(2):234-242 [56] 林曦照,李星陆,姜筱雨,等. 放牧对中国北部草地土壤真菌群落组成和功能的影响:Meta分析[J/OL]. https://link.cnki.net/urlid/32.1119.P.20231201.2125.004,2023-12-04/2024-03-30 [57] 阚海明,陈超,马晓东,等. 华北退化荒地建植豆类和禾本植物人工草地对土壤真菌群落结构和功能的影响[J]. 生态学报,2023,43(24):10092-10103 [58] SEMCHENKO M,LEFF J W,LOZANO Y M,et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland[J]. Science Advances,2018,4(11):aau4578 [59] WANG T,YANG K,MA Q,et al. Rhizosphere microbial community diversity and function analysis of cut chrysanthemum during continuous monocropping[J]. Frontiers in Microbiology,2022,13:801546 [60] WALDROP M P,ZAK D R,BLACKWOOD C B,et al. Resource availability controls fungal diversity across a plant diversity gradient[J]. Ecology Letters,2006,9(10):1127-35 [61] 陈倩. 祁连山国家公园植物和土壤微生物多样性及群落构建机制[D]. 杨凌:西北农林科技大学,2023:78-80 [62] 岳雪娇,黄沛,李永华,等. 敦煌三道泉典型植物群落土壤微生物群落结构特征与影响因素[J]. 陆地生态系统与保护学报,2023,3(3):37-47 [63] 徐微. 松嫩羊草草地放牧梯度上土壤微生物和根系分泌物的初步研究[D]. 长春:东北师范大学,2005:17-18 [64] 赵玉红,魏学红,苗彦军,等. 藏北高寒草甸不同退化阶段植物群落特征及其繁殖分配研究[J]. 草地学报,2012,20(2):221-228 [65] 姚世庭,芦光新,邓晔,等. 模拟增温对土壤真菌群落组成及多样性的影响[J]. 生态环境学报,2021,30(7):1404-1411 [66] 毕银丽,郭晨,王坤. 煤矿区复垦土壤的生物改良研究进展[J]. 煤炭科学技术,2020,48(4):52-59 [67] 毕银丽,薛子可. 丛枝菌根真菌提高植物高温胁迫抗逆性及在矿区生态修复应用展望[J]. 中国科学基金,2021,35(6):933-939 [68] YANG Y,DOU Y,HUANG Y,et al. Links between Soil Fungal Diversity and Plant and Soil Properties on the Loess Plateau[J]. Frontiers in Microbiology,2017,8:2198 [69] PROBER S M,LEFF J W,BATES S T,et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[J]. Ecology Letters,2015,8(1):85-95 [70] 林春英,李希来,张玉欣,等. 黄河源区高寒沼泽湿地土壤微生物群落结构对不同退化的响应[J]. 环境科学,2021,42(8):3971-3984 |