[1] 黄德华,陈佐忠,张鸿芳. 贝加尔针茅,克氏针茅,线叶菊草原地下生物量的比较研究[C]//中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第2集). 北京:科学出版社,1988:122-131
[2] 袁璐,吴文荣,黄必志. 放牧强度对草地地下生物量影响的国内研究进展[J]. 草业与畜牧,2012(11):57-62
[3] 王仁忠,李建东. 松嫩草原碱化羊草草地放牧空间演替规律的研究[J]. 应用生态学报,1995,6(3):277-281
[4] 张玉勋. 羊草草地植被对放牧和保护的反应[J]. 中国草地,1995(1):1-5
[5] 李金花,李镇清. 不同放牧强度下冷蒿,星毛委陵菜的形态可塑性及生物量分配格局[J]. 植物生态学报,2002,26(4):435-440
[6] 姚爱兴,王培. 不同放牧处理下多年生黑麦草/白三叶草地第一性生产力研究[J]. 中国草地,1998(2):12-16
[7] 贾丙瑞,周广胜,王风玉,等. 土壤微生物与根系呼吸作用影响因子分析[J]. 应用生态学报,2005,16(8):1547-1552
[8] 李凌浩,韩兴国,王其兵,等. 锡林河流域一个放牧草原群落中根系呼吸占土壤总呼吸比例的初步估计[J]. 植物生态学报,2002,26(1):29-32
[9] 程慎玉,张宪洲. 土壤呼吸中根系与微生物呼吸的区分方法与应用[J]. 地球科学进展,2003,18(4):597-602
[10] Wang X G, Zhu B, Wang Y Q, et al. Field measures of the contribution of root respiration to soil respiration in an alder and cypress mixed plantation by two methods: trenching method and root biomass regression method [J]. European Journal of Forest Research,2008,127(1):285-291
[11] Tufekcioglu A, Raich J W, Isenhart T M, et al. Fine root dynamics, coarse root biomass, root distribution, and soil respiration in a multispecies riparian buffer in Central Iowa, USA[J]. Agroforestry Systems,1999,44(1):163-174
[12] 胡中民,樊江文,钟华平,等.中国草地地下生物量研究进展[J].生态学杂志,2005,24(9):1095-1101
[13] Li Y Q, Xu M, Sun O J, et al. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests [J]. Soil Biology and Biochemistry,2004,36(9):2111-2114
[14] 孙熙麟,王明玖,陈海军,等.短花针茅荒漠草原地下生物量对不同强度放牧的响应[J].内蒙古农业大学学报,2010,31(4):101-104
[15] 陈晓鹏,尚占环.中国草地生态系统碳循环研究进展[J].中国草地学报,2011,33(4):99-110
[16] 张新杰,韩国栋,王忠武.不同载畜率对短花针茅荒漠草原土壤呼吸的影响[J].生态环境学报,2014,23(5):743-748
[17] LeCain D R, Morgan J A, Schuman G E, et al. Carbon exchange and species composition of grazed pastures and exclosures in the shortgrass steppe of Colorado[J].Agriculture, Ecosystems and Environment,2002,93(1-3):421-435
[18] Johnson L C, Matchett J R. Fire and grazing regulate belowground processes in tallgrass prairie [J]. Ecology,2001,82(12):3377-3389
[19] Kang X, Hao Y, Cui X, et al. Effects of grazing on CO2 balance in a semiarid steppe: field observations and modeling [J]. Journal of Soils and Sediments,2013,13(6):1012-1023
[20] Wayne Polley H, Frank A B, Sanabria J, et al. Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie[J]. Global Change Biology,2008,14(7):1620-1632
[21] Pucheta E, Bonamici I, Cabido M, et al. Below-ground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina [J]. Austral Ecology,2004,29(2):201-208
[22] Gao Y Z, Giese M, Lin S, et al. Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity [J]. Plant and Soil,2008,307(1/2):41-50
[23] Rueda M, Rebollo S, Rodríguez M A. Habitat productivity influences root mass vertical distribution in grazed Mediterranean ecosystems [J]. Acta Oecologica,2010,36(4):377-382
[24] Frank D A, Kuns M M, Guido D R. Consumer control of grassland plant production [J]. Ecology,2002,83(3):602-606
[25] Martin D, Chambers J. Restoration of riparian meadows degraded by livestock grazing: above-and belowground responses [J]. Plant Ecology,2002,163(1):77-91
[26] Wang H, Liu S R, Wang J X, et al. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China[J].Forest Ecology and Management,2013,300:4-13
[27] Niu S L, Wu M Y, Han Y, et al. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe [J]. New Phytologist,2008,177(1):209-219
[28] Kurt S P, Andrew J B, John S K, et al. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3[J]. New Phytologist,2008,180(1):153-161 |