[1] 唐克丽. 黄土高原水蚀风蚀交错区治理的重要性与紧迫性[J]. 中国水土保持,2000(11):11-12
[2] Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Soil Research,1992,30(2):195-207
[3] 邱莉萍. 黄土高原植被恢复生态系统土壤质量变化及调控措施[D]. 杨凌: 西北农林科技大学,2007:116-131
[4] Burns R G. Enzyme activity in soil: location and a possible role in microbial ecology[J]. Soil Biology and Biochemistry,1982,14(5):423-427
[5] Frankenberger W, Dick W A. Relationships between enzyme activities and microbial growth and activity indices in soil[J]. Soil Science Society of America Journal,1983,47(5):945-951
[6] 王翔,李晋川,岳建英,等. 安太堡露天矿复垦地不同人工植被恢复下的土壤酶活性和肥力比较[J]. 环境科学,2013,34(9):3601-3606
[7] Caravaca F, Alguacil M M, Figueroa D, et al. Re-establishment of Retama sphaerocarpa as a target species for reclamation of soil physical and biological properties in a semi-arid Mediterranean area[J]. Forest Ecology and Management,2003,182(1):49-58
[8] Badiane N N Y, Chotte J, Pate E, et al. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions[J]. Applied Soil Ecology,2001,18(3):229-238
[9] 周礼恺. 土壤酶学[M]. 科学出版社,1987:123-128
[10] 向泽宇,王长庭,宋文彪. 草地生态系统土壤酶活性研究进展[J]. 草业科学,2011,28(10):1801-1806
[11] Zhang Y L, Chen L J, Chen X H, et al. Response of soil enzyme activity to long-term restoration of desertified land[J]. Catena,2015(133):64-70
[12] Cenini V L, Fornara D A, Mcmullan G, et al. Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils[J]. Soil Biology and Biochemistry,2016(96):198-206
[13] Henry H A, Juarez J D, Field C B, et al. Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland[J]. Global Change Biology,2005,11(10):1808-1815
[14] Zhou X, Chen C, Wang Y, et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland[J]. Science of the Total Environment,2013(444):552-558
[15] Steinauer K, Tilman D, Wragg P D, et al. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment[J]. Ecology,2015,96(1):99-112
[16] 彭文英,张科利,杨勤科. 黄土坡面土壤性质随退耕时间的动态变化研究[J]. 干旱区资源与环境,2006,20(5):153-158
[17] 潘成忠,上官周平,刘国彬. 黄土丘陵沟壑区退耕草地土壤质量演变[J]. 生态学报,2006,26(3):690-696
[18] Schlesinger W H, Reynolds J F, Cunningham G L, et al. Biological feedbacks in global deserti? cation[J]. Science,1990,247(4946):1043-1048
[19] Wardle D A. The influence of biotic interactions on soil biodiversity[J]. Ecology Letters,2006,9(7):870-886
[20] 张平仓,王斌科,唐克丽. 神木试区环境特征[J]. 中科院西北水土保持研究所集刊,1993(18):16-22
[21] 李学章,邵明安,魏孝荣,等. 黄土高原水蚀风蚀交错带水分和密度对人工草地土壤呼吸的影响[J]. 水土保持学报,2011,25(4):207-211
[22] Burns R G, Deforest J L, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology and Biochemistry,2013,(58):216-234
[23] Von Mersi W, Schinner F. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride[J]. Biology and Fertility of Soils,1991,11(3):216-220
[24] 关松荫. 土壤酶及其研究法[M]. 农业出版社,1986:115-134
[25] Bandick A K, Dick R P. Field management effects on soil enzyme activities[J]. Soil Biology and Biochemistry,1999,31(11):1471-1479
[26] Groffman P M, Mcdowell W H, Myers J C, et al. Soil microbial biomass and activity in tropical riparian forests[J]. Soil Biology and Biochemistry,2001,33(10):1339-1348
[27] Bending G D, Turner M K, Jones J E. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities[J]. Soil Biology and Biochemistry,2002,34(8):1073-1082
[28] 胡亚林,汪思龙,黄宇,等. 凋落物化学组成对土壤微生物学性状及土壤酶活性的影响[J]. 生态学报,2005,25(10):2662-2668
[29] 王春阳,周建斌,夏志敏,等. 黄土高原区不同植物凋落物搭配对土壤微生物量碳, 氮的影响[J]. 生态学报,2011,31(8):2139-2147
[30] D'Odorico P, He Y, Collins S, et al. Vegetation–microclimate feedbacks in woodland–grassland ecotones[J]. Global Ecology and Biogeography,2013,22(4):364-379
[31] Fliervoet L M, Werger M. Canopy structure and microclimate of two wet grassland communities[J]. New Phytologist,1984,96(1):115-130
[32] 文都日乐,李刚,张静妮. 呼伦贝尔不同草地类型土壤微生物量及土壤酶活性研究[J]. 草业学报,2010,19(5):94-102
[33] 单贵莲,陈功,宁发,等. 典型草原恢复演替过程中土壤微生物及酶活性动态变化研究[J]. 草地学报,2012,20(2):292-297
[34] 高海宁,张勇,秦嘉海,等. 祁连山黑河上游不同退化草地有机碳和酶活性分布特征[J]. 草地学报,2014,22(2):283-290
[35] 韩凤朋,郑纪勇,张兴昌. 黄土退耕坡地植物根系分布特征及其对土壤养分的影响[J]. 农业工程学报,2009,25(2):50-55
[36] 邹俊亮,邵明安,龚时慧. 不同植被和土壤类型下土壤水分剖面的分异[J]. 水土保持研究,2011,18(6):12-17
[37] 李裕元,邵明安,陈洪松,等. 水蚀风蚀交错带植被恢复对土壤物理性质的影响[J]. 生态学报,2010(16):4306-4316
[38] 白一茹,王幼奇,展秀丽. 陕北农牧交错带土地利用方式对土壤物理性质及分布特征的影响[J]. 中国农业科学,2012,46(8):1619-1627
[39] Herold N, Schoening I, Berner D, et al. Vertical gradients of potential enzyme activities in soil profiles of European beech, Norway spruce and Scots pine dominated forest sites[J]. Pedobiologia,2014,57(3):181-189
[40] 谈嫣蓉,蒲小鹏,张德罡,等. 不同退化程度高寒草地土壤酶活性的研究[J]. 草原与草坪,2006(3):20-22
[41] 王理德,姚拓,何芳兰,等. 石羊河下游退耕区次生草地自然恢复过程及土壤酶活性的变化[J]. 草业学报,2014,23(4):253-261
[42] Bowles T M, Acosta-Martínez V, Calderón F, et al. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape[J]. Soil Biology and Biochemistry,2014,68:252-262
[43] Wang B, Xue S, Liu G B, et al. Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, Northwest China[J]. Catena,2012(92):186-195
[44] 王兵,刘国彬,薛萐,等. 黄土丘陵区撂荒对土壤酶活性的影响[J]. 草地学报,2009(3):282-287
[45] 岳中辉,王博文,庞健,等. 松嫩盐碱草地主要植物群落土壤酶活性研究[J]. 水土保持学报,2009(6):158-161
[46] Izquierdo I, Caravaca F, Alguacil M M, et al. Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions[J]. Applied Soil Ecology,2005,30(1):3-10
[47] 王国梁,刘国彬. 黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J]. 水土保持通报,2002,22(1):1-5 |