[1] 万忠梅,吴景贵.土壤酶活性影响因子研究进展[J].西北农林科技大学学报(自然科学版),2005,33(6):87-92 [2] 吕国红,周广胜,赵先丽,等.土壤碳氮与土壤酶相关性研究进展[J].辽宁气象,2005(2):6-8 [3] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:19-31 [4] 周玮,周运超,李进.花江石漠化喀斯特土壤有机碳及其部分转化酶演变[J].农业现代化研究,2007,28(1):110-113 [5] 邹军.退化喀斯特区植被恢复中土壤酶与土壤呼吸特征研究[D].贵阳:贵州大学,2008:7-8 [6] 李媛媛.黔中石灰岩土壤酶和灌木林植物物种多样性研究[D].贵阳:贵州大学,2008:8-11 [7] Sinsabaugh Robert L,Lauber Christian L,Weintraub Michael N,et al.Stoichiometry of soil enzyme activity at global scale[J].Ecology letters,2008,11(11):1252-1264 [8] Turner B L.Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils[J].Applied and Environmental Microbiology,2010,76(19):6485-6493 [9] 邵文山,李国旗.土壤酶功能及测定方法研究进展[J].北方园艺,2016(9):188-193 [10] 虎高勇,李俊臻.甘肃尕海湿地及其生物多样性特征[J].甘肃林业科技,2011,36(3):24-28 [11] 徐鹏彬,邓建明,赵长明.甘肃尕海湿地不同海拔草地群落组分及物种多样性研究[J].草业学报,2012,21(2):219-226 [12] 尹亚丽,王玉琴,鲍根生,等.退化高寒草甸土壤微生物及酶活性特征[J].应用生态学报,2017,28(12):3881-3890 [13] 胡雷,王长庭,王根绪,等.三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化[J].草业学报,2014,23(3):8-19 [14] 葛晓改,肖文发,曾立雄,等.三峡库区马尾松林土壤-凋落物层酶活性对凋落物分解的影响[J].生态学报,2014,34(9):2228-2237 [15] 徐秋芳,朱志建,俞益斌.不同森林植被下土壤酶活性研究[J].浙江林业科技,2003,23(4):10-12 [16] 王笛,马风云,姚秀粉,等.黄河三角洲退化湿地土壤养分、微生物与土壤酶特性及其关系分析[J].中国水土保持科学,2012,10(5):94-98 [17] 万忠梅,宋长春,杨桂生,等.三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J].环境科学学报,2009,29(2):406-412 [18] 许延昭,马维伟,李广,等.尕海湿地植被退化过程中土壤轻重组有机碳动态变化特征[J].水土保持学报,2018,32(3):205-211 [19] 马玉寿,郎百宁,李青云,等.江河源区高寒草甸退化草地恢复与重建技术研究[J].草业科学,2002(9):1-5 [20] MA Weiwei,Abdul-Rauf M.A,WANG Yuesi,et al.Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of North-West China[J].Nutrient Cycling in Agroecosystems,2018,112(3):335-354 [21] 黄蓉,王辉,马维伟,等.尕海洪泛湿地退化过程中土壤理化性质的变化特征[J].水土保持学报,2014,28(5):221-227 [22] 苏祎.对烘干法水分分析原理的研究[J].中国计量,2009,(12):67-70 [23] 刘建,邱莉萍,程积民,等.黄土高原水蚀风蚀交错区5种典型草地群落土壤酶活性的研究[J].草地学报,2017,25(1):32-37 [24] 管光玉,范燕敏,武红旗,等.不同利用方式土壤颗粒分形特征及其与土壤有机碳库稳定性的关系[J].草地学报,2016,24(2):258-262 [25] Harrison A F.Relationship between intensity of phosphatase activity and physicochemical properties in woodland soils[J].Soil Biology and Biochemistry,1983,15:93-99 [26] 秦嘉海,张勇,赵芸晨,等.祁连山黑河上游不同退化草地土壤理化性质及养分和酶活性的变化规律[J].冰川冻土,2014,36(2):335-346 [27] 冯瑞章,周万海,龙瑞军,等.江河源区不同退化程度高寒草地土壤物理、化学及生物学特征研究[J].土壤通报,2010,41(2):263-269 [28] 蒋永梅,师尚礼,田永亮,等.高寒草地不同退化程度下土壤微生物及土壤酶活性变化特征[J].水土保持学报,2017,31(3):244-249 [29] 赵仁竹,汤洁,梁爽,等.吉林西部盐碱田土壤蔗糖酶活性和有机碳分布特征及其相关关系[J].生态环境学报,2015,24(2):244-249 [30] 马维伟,李广,王立,等.植被退化对尕海湿地枯落物分解的影响[J].水土保持通报,2018,38(1):29-35 [31] 李鑫,马瑞萍,安韶山,等.黄土高原不同植被带土壤团聚体有机碳和酶活性的粒径分布特征[J].应用生态学报,2015,26(8):2282-2290 [32] 马维伟,王跃思,李广,等.尕海湿地植被退化过程中植被——土壤系统有机碳储量变化特征[J].应用生态学报,2018,29(12):3900-3906 [33] 马维伟,李广,石万里,等.甘肃尕海湿地退化过程中植物生物量及物种多样性变化动态[J].草地学报,2016,24(5):960-966 [34] 万忠梅,宋长春.三江平原不同类型湿地土壤酶活性及其与营养环境的关系[J].水土保持学报,2008,22(5):158-161 [35] 付杰,赵丹,蒋敏芝,等.崇明西滩芦苇湿地土壤酶活性特征的研究[J].安徽农业科学,2014,42(7):1969-1972 [36] 王文颖,王启基,王刚.高寒草甸土地退化及其恢复重建对土壤碳氮含量的影响[J].生态环境,2006,15(2):362-366 [37] 马维伟,王辉,李广,等.甘南尕海湿地不同植被退化阶段土壤有机碳含量及动态[J].水土保持学报,2015,29(5):254-259 [38] 韩永伟,韩建国,张蕴薇,等.农牧交错带退耕还草对土壤淀粉酶和脲酶活性的影响[J].草地学报,2005,13(1):59-62,74 [39] 陈慧清.若尔盖高原湿地土壤酶活性及微生物多样性研究[D].西安:陕西师范大学,2018:25-30 [40] 岳中辉,王博文,王洪峰,等.松嫩平原西部退化盐碱草地土壤酶活性的季节动态[J].水土保持学报,2008,22(6):162-165 [41] 熊浩仲,王开运,杨万勤.川西亚高山冷杉林和白桦林土壤酶活性季节动态[J].应用与环境生物学报,2004,10(4):416-420 [42] 范阿南,杨凯,刘春华,等.辽东山区3种次生林群落土壤酶活性的季节动态[J].东北林业大学学报,2009,37(1):52-54,71 [43] 南丽丽,郁继华,郭全恩.荒漠灌区不同种植年限苜蓿地土壤酶活性的变化研究[J].干旱地区农业研究,2015,33(06):71-76,92 |