[1] 郭丰源,王博文,李文鹏,等. 小麦-玉米轮作体系中土壤细菌菌群结构及多样性分析[J]. 麦类作物学报,2018,38(05):623-630 [2] 王岳坤,洪葵. 红树林土壤细菌群落16S rDNA V3片段PCR产物的DGGE分析[J]. 微生物学报,2005,45(2):201-204 [3] Kulmatiski A,Beard K H,Stevens J R,et al. Plant-soil feedbacks:A meta-analytical review[J]. Ecology Letters,2008,11(9):980-992 [4] Zhou J,Xia B,Treves D S,et al. Spatial and resource factors influencing high microbial diversity in soil[J]. Apply Environ Microbial,2002,68(1):326-334 [5] 杨广容,马燕,蒋宾,等. 基于16S rDNA测序对茶园土壤细菌群落多样性的研究[J]. 生态学报,2019,39(22):1-10 [6] Lauber C L,Hanady M,Knight R,et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology,2009,75(15):5111-5120 [7] Frankow-Lindberg B E,Halling M,Hoglind M,et al. Yield and stability of yield of single and multi-clover grass-clover swards in two contrasting temperate environments[J]. Grass and Forage Science,2009,64(3):236-245 [8] Nguyen C. Rhizodeposition of organic C by plants:mechanisms and controls[J]. Agronomie,2003,23(5-6):375-396 [9] 韩建国,马春晖,毛培胜等. 播种比例和施氮量及刈割期对燕麦与豌豆混播草地产草量和质量的影响[J]. 草地学报,1999,7(2):87-94 [10] 张永亮,王建丽,胡自治. 杂花苜蓿与无芒雀麦混播群落种间竞争及稳定性[J]. 草地学报,2007,15(1):43-49 [11] 张永亮,范富,高凯,等. 苜蓿、无芒雀麦单播与混播对土壤有机质和速效养分的影响[J]. 草地学报,2009,17(1):22-26 [12] 朱亚琼,郑伟,王祥,等. 混播方式对豆禾混播草地植物根系构型特征的影响[J]. 草业学报,2018,27(1):73-85 [13] 郭海明,于磊,林祥群. 施肥对绿洲区苜蓿与无芒雀麦混播草地生产性能的影响[J]. 石河子大学学报,2009,27(1):46-50 [14] Trannin W,Urquiaga S,Guerra G,et al. Interspecies competition and N transfer in a tropical grass-legume mixture[J]. Biology and Fertility of Soils,2000,32(6):441-448 [15] 陆炳章. 黑麦草与豆科绿肥混播改土效果及其应用[J]. 草业科学,1985,2(2):43-46 [16] 王旭,曾昭海,朱波,等. 燕麦与箭筈豌豆不同混作模式对根际土壤微生物数量的影响[J]. 草业学报,2009,18(6):151-157 [17] Zeng Q,An S,Liu Y. Soil bacterial community response to vegetation succession after fencing in the grassland of China[J]. Science of the Total Environment,2017,609:2-10 [18] Mohammad Bahram,Falk Hildebrand,Sofia K,et al. Structure and function of the global topsoil microbiome[J]. Nature,2018,560:233-237 [19] Mago? T,Salzberg S L. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics,2011,27(21):2957-2963 [20] Bokulich N A,Subramanian S,Faith J J,et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods,2012.10:57-59 [21] Haas B. J,G D E A. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research,2011,21:494-504 [22] Edgar R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,2013,10:996-998 [23] Desantis T Z,Hugenholtz P,Larsen N,et al. Greengenes,a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB[J]. Applied and Environmental Microbiology,2006,72(7):5069-5072 [24] Wang Q,Garrity G M,Tiedje J M,et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and environmental microbiology,2007,73(16):5261-5267 [25] Edgar R C. MUSCLE:multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research,2004,32(5):1792-1797 [26] Gao S,Zhang R,Cao W,et al. Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China[J]. Journal of Integrative Agriculture,2015,14(12):2512-2520 [27] Lu X,Ji S,Hou C,et al. Impact of root C and N reserves on shoot regrowth of defoliated alfalfa cultivars differing in fall dormancy[J]. Grassland Science,2018,64(2):83-90 [28] Lu X,Ji S,Hou C,et al. Morphological development and dry weight distribution of alfalfa cultivars varying in fall dormancy under a short-term cultivation system[J]. Grassland Science,2017,63(1):23-28 [29] Ding J,Jiang X,Ma M,et al. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China[J]. Applied Soil Ecology,2016,105:187-195 [30] Habekost M,Eisenhauer N,Scheu S,et al. Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment[J]. Soil Biology and Biochemistry,2008,40(10):2588-2595 [31] 芦奕晓,牟乐,杨惠敏. 豆科与禾本科牧草混播改良土壤的研究进展[J]. 中国草地学报,2019,41(1):94-100 [32] Thakur M P,Milcu A,Manning P,et al. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors[J]. Global Change Biology,2015,21:4076-4085 [33] Zhao J,Zeng Z,He X,et al. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization[J]. European Journal of Soil Biology,2015,68:61-68 [34] Mikkonen A,Kondo E,Lappi K,et al. Contaminant and plant-derived changes in soil chemical and microbiological indicators during fuel oil rhizoremediation with Galega orientalis[J]. Geoderma,2011,160(3):336-346 [35] 章家恩,刘文高,陈景青,等. 刈割对牧草地下部根区土壤养分及土壤酶活性的影响[J]. 生态环境,2005,14(3):387-391 [36] 朱丽霞,章家恩,刘文高. 根系分泌物与根际微生物相互作用研究综述[J]. 生态环境,2003,12(1):102-105 [37] 赛吉日呼.牧草不同种植方式对土壤酶活性和土壤微生物量及多样性的影响[M]. 呼和浩特:内蒙古大学,2019:41-42 [38] 苟文龙,李平,张建波,等. 多花黑麦草+箭筈豌豆混播草地地上生物量和营养品质动态研究[J]. 草地学报,2019,27(2):473-481 |