[1] Wang L,D'Odorico P,Evans J P,et al. Dryland ecohydrology and climate change:Critical issues and technical advances[J]. Hydrology & Earth System Sciences,2012,16(8):2585-2603 [2] 张志南,武高林,王冬,等. 黄土高原半干旱区天然草地群落结构与土壤水分关系[J]. 草业科学,2014,23(6):313-319 [3] Fay P A,Blair J M,Smith M D, et al. Relative effects of precipitation variability and warming on grassland ecosystem function[J]. Biogeosciences,2011,8(4):3053-3068 [4] 明绍慧,秦正坤,黄瑜. 卫星资料揭示的青藏高原对流层上层温度气候演变趋势特征[J]. 高原气象,2019,38(02):264-277 [5] Xu Y,Zhao ZC,Luo Y,et al. Climate change projections for the 21st century by the NCC/IAPT63 Model with SRES Scenarios[J]. Acta Meteorologica Sinica,2005,19(4):407-417 [6] 朱俊瑾,朱新萍,韩东亮,等. 新疆巴音布鲁克高寒湿地植物-土壤碳氮化学计量特征[J]. 新疆农业大学学报,2017,40(01):53-59 [7] Dunne J A,Harte J,Taylor K J. Subalpine meadow flowering phenology responses to change:integrating experimental and gradient methods[J]. Ecological Monographs,2003,73(1):69-86 [8] 王长庭,王启基,沈振西,等. 模拟降水对高寒矮嵩草草甸群落影响的初步研究[J]. 草业学报,2003,12(02):25-29 [9] 许庆民,周赓,郭小伟,等.青藏高原高寒草甸群落特征对氮沉降和增水的响应[J]. 草原与草坪,2017,37(05):8-13 [10] 武建双,李晓佳,沈振西,等. 藏北高寒草地样带物种多样性沿降水梯度的分布格局[J]. 草业学报,2012,21(03):17-25 [11] 李长斌,彭云峰,赵殿智,等. 降水变化和氮素添加对青藏高原高寒草原群落结构和物种多样性的影响[J].水土保持研究,2016,23(06):185-191 [12] 李凤滋,旭日. 增水对青藏高原高寒草甸生态系统表层土壤碳氮的影响[J]. 林业资源管理,2018,47(06):99-105 [13] 杨新宇,林笠,李颖,等. 青藏高原高寒草甸土壤物理性质及碳组分对增温和降水改变的响应[J]. 北京大学学报(自然科学版),2017,53(04):765-774 [14] 舒佳礼,王京,高志娟,等. 白羊草与达乌里胡枝子混播草地不同降雨年份土壤水分利用状况[J]. 水土保持通报,2014,34(03):75-81 [15] 李以康,杜岩功,张正芝,等. 种子补播恢复退化草地研究进展[J]. 草地学报,2017,25(06):1171-1177 [16] 张宪洲,杨永平,朴世龙,等. 青藏高原生态变化[J]. 科学通报,2015,60(32):3048-3056 [17] 孙振钧. 生态学实验与野外实习指导[M]. 北京:化学工业出版社,2010:70-75 [18] Na X F,Yu H L,Wang p,et al. Vegetation biomass and soil moisture coregulate bacterial community succession under altered precipitation regimes in a desert steppe in northwestern China[J]. Soil Biology and Biochemistry,2019,107520 [19] 鲍士旦. 土壤农化分析[M]. (第三版). 北京:中国农业出版社,2000:81-82,22-24,30-34 [20] 吴晓荣,叶祥盛,赵竹青. 流动注射法与凯氏定氮法测定土壤全氮的比较[J]. 华中农业大学学报,2009,2(05):560-563 [21] 曹凯红,章金龙,李树德. 两种测定土壤全磷含量方法对比[J]. 保山学院学报,2018,37(05):26-29 [22] Crooke W M,Simpson W. Determination of ammonium in Kjeldahl extracts of crops by an automated procedure[J]. Journal of the Science of Food and Agriculture,1971,22:9-10 [23] Best E X. An automated method for determining nitrateN in soil extracts[J]. Queensland Agricultural Journal,1976,33:161-165 [24] 冉炜,沈其荣,郑金伟,等. 土壤硝化作用过程中亚硝态氮的累积研究[J]. 土壤学报,2000(04):474-481 [25] 刘雨晴,朱小琴,胡会峰,等. 熏蒸浸提法测定碱性土微生物生物量碳初探[J]. 土壤,2018,50(03):640-644 [26] Alatalo R V. Problems in the measurement of evenness in ecology[J]. Oikos,1981,37(2):199-204 [27] 张海东,汝海丽,焦峰,等. 黄土丘陵区退耕时间序列梯度上草本植被群落与土壤C、N、P、K化学计量学特征[J]. 环境科学,2016,37(03):1128-1138 [28] 周建琴,田赟,吴雨晴,等. 不同放牧方式下的草场植被群落特征及其与土壤因子的关系-以新巴尔虎左旗为例[J]. 生态环境学报,2019,28(06):1117-1126 [29] 王志鹏,张宪洲,何永涛,等. 降水变化对藏北高寒草原化草甸降水利用效率及地上生产力的影响[J]. 应用生态学报,2018,29(06):1822-1828 [30] 李文娇,刘红梅,赵建宁,等. 氮素和水分添加对贝加尔针茅草原植物多样性及生物量的影响[J]. 生态学报,2015,35(19):6460-6469 [31] 白春利,阿拉塔,陈海军,等. 氮素和水分添加对短花针茅荒漠草原植物群落特征的影响[J]. 中国草地学报,2013,35(2):69-75 [32] 赵新风,徐海量,张鹏. 养分与水分添加对荒漠草地植物群落结构和物种多样性的影响[J]. 植物生态学报,2014,38(2):167-177 [33] Wu Y B,Wu J,Deng Y C,et al. Comprehensive assessments of root biomass and production in a Kobresia humilis meadow on the Qinghai-Tibetan Plateau[J]. Plant and soil,2011,338(1):497-510 [34] 邓建明,姚步青,周华坤. 水氮添加条件下高寒草甸主要植物种氮素吸收分配的同位素示踪研究[J]. 植物生态学报,2014,38(2):116-124 [35] 张杰琦,李奇,任正炜. 氮素添加对高寒草甸植物群落物种丰富度及其与生产力关系的影响[J]. 植物生态学报,2010,34(10):1125-1131 [36] 赵艳艳,周华坤,姚步青,等. 长期增温对高寒草甸植物群落和土壤养分的影响[J]. 草地学报,2015,23(4):665-671 [37] Wang D,Hen P,Wang Q,et al. Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains,Northeast China[J].Pedosphere,2016,26(3):399-407 [38] 魏金明,姜勇,符明明,等. 水、肥添加对内蒙古典型草原土壤碳、氮、磷及pH的影响[J]. 生态学杂志,2011,30(08):1642-1646 [39] Wang W Y,Wang Q J,Wang C Y,et al. The effect of land management on carbon and nitrogen status in plants and soils of alpine meadows on the Tibetan plateau[J]. Land Degradation & Development,2010,16(5):405-415 [40] Liu W J,Chen S Y,Zhao Q,et al. Variation and control of soil organic carbon and other nutrients in permafrost regions on central Qinghai-Tibetan Plateau[J]. Environmental Research Letters,2014,9(11):114013 [41] Luo Y,Su B,Currie W S,et al. Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide[J]. BioScience,2004,54(8):731-739 [42] Li L,Zhu B,Chen C,et al. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau[J]. Scientific Reports,2016,6:31438 [43] Zhou X,Chen C,Wang Y,et al. Soil extractable carbon and nitrogen,microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland[J]. Geoderma,2013,206(9):24-31 [44] Zong N,Chai X,Shi P L,et al. Effects of Warming and Nitrogen Addition on Plant Photosynthate Partitioning in an Alpine Meadow on the Tibetan Plateau[J]. Journal of Plant Growth Regulation,2017(S1):1-10 |