[1] IPCC(Intergovernmental Panel on Climate Change). Climate change 2007:The physical science basis:Summary for policy makers[M]. Cambridge, UK:Cambridge University Press,2007:102
[2] Finzi A C, Moored D J, Delucia J, et al. Progressive nitrogen limitation of ecosystem processes under elevated CO2in a warm-temperate forest[J]. Ecology,2006,87(1):15-25
[3] Smith S E, Read D J. Mycorrhizal symbiosis[M]. London:Academic Press,1997:56
[4] 刘润进, 陈应龙. 菌根学[M]. 北京:科学出版社,2007:46
[5] Abd-Alla M H, El-Enany A W, Nafady N A, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil[J]. Microbiological Research,2014,169(1):49-58
[6] Ruiz-Lozano J M, Collados C, Barea J M, et al. Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants[J]. New Phytologist,2001,151(2):493-502
[7] Zhu Y G, Miller R M. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems[J]. Trends in Plant Science,2003,8(9):407-409
[8] Hungate B A, Jackson R B, Field C B, et al. Detecting changes in soil carbon in CO2 enrichment experiments[J]. Plant and Soil,1996,187(2):135-145
[9] Godbold D L, Hoosbeek M R, Lukac M, et al. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter[J]. Plant and Soil,2006,281(1):15-24
[10] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science,1996,47(2):151-163
[11] Vogt K A, Grier C C, Vogt D J. Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests[J]. Advances in Ecological Research,1986,15:303-377
[12] Aber J D, Melillo J M, McClaugherty C A. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems[J]. Canadian Journal of Botany,1990,68(10):2201-2208
[13] Orwin K H, Kirschbaum M U F, St John M G, et al. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage:a model-based assessment[J]. Ecology Letters,2011,14(5):493-502
[14] Johnson D, Leake J R, Read D J. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland:short-term respiratory losses and accumulation of 14C[J]. Soil Biology and Biochemistry,2002,34(10):1521-1524
[15] Bryla D R, Eissenstat D M. Respiratory costs of mycorrhizal associations[C]//Lambers H, Ribas-Carbo M, eds. Advances in Photosynthesis and Respiration. Dordrecht:Springer,2005:207-224
[16] Rillig M C, Mummey D L. Mycorrhizas and soil structure[J]. New Phytologist,2006,171(1):41-53
[17] Miller R M, Reinhardt D R, Jastrow J D. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities[J]. Oecologia,1995,103(1):17-23
[18] Bever J D, Dickie I A, Facelli E, et al. Rooting theories of plant community ecology in microbial interactions[J]. Trends in Ecology and Evolution,2010,25(8):468-478
[19] Leake J R, Johnson D, Donnelly D P, et al. Networks of power and influence:the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning[J]. Canadian Journal of Botany,2004,82:1016-1045
[20] Staddon P L, Ramsey C B, Ostle N, et al. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C[J]. Science,2003,300(5622):1138-1140
[21] Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant Soil,1998,198(1):97-107
[22] Rillig M C, Caldwell B A, W sten H A B, et al. Role of proteins in soil carbon and nitrogen storage:controls on persistence[J]. Biogeochemistry,2007,85(1):25-44
[23] Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science,1996,161(9):575-586
[24] McLaughlin S B, Kiniry J R, Taliaferro C M, et al. Projecting yield and utilization potential of switchgrass as an energy crop[J]. Advances in Agronomy,2006,90:267-297
[25] Vogel K P, Brejda J J, Walters D T, et al. Switchgrass biomass production in the Midwest USA:harvest and nitrogen management[J]. Agronomy Journal,2002,94:413-420
[26] Hopkins A A, Taliaferro C M, Murphy C D, et al. Chromosome number and nuclear DNA content of several switchgrass populations. Crop science,1996,36:1192-1195
[27] McLaughlin S B, Kszos L A. Development of switchgrass (Panicum virgatum L.) as a bioenergy feedstock in the United States[J]. Biomass and Bioenergy,2005,28(6):515-535
[28] 徐炳成,山仑,李凤民. 黄土丘陵半干旱区引种禾草柳枝稷的生物量与水分利用效率[J]. 生态学报,2005,25(9):2206-2213
[29] Collins H P, Smith J L, Fransen S. et al. Carbon sequestration under irrigated switchgrass (Panicum virgatum L.) production[J]. Soil Science Society of America Journal,2010,74(6):2049-2058
[30] Ma Z, Wood C W, Bransby D I. Soil management impacts on soil carbon sequestration by switchgrass[J]. Biomass and Bioenergy,2000,18(6):469-477
[31] Bransby D I, Ward C Y, Rose P A, et al. Biomass production from selected herbaceous species in the southeastern USA[J]. Biomass,1989,20(3-4):187-197
[32] Wu Y P, Liu S B. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin[J]. Biomass and Bioenergy,2012,36:182-191
[33] Lemus R, Parrish D J, Wolf D D. Nutrient uptake by ‘Alamo’ switchgrass used as an energy crop[J]. Bioenergy Research,2009, 2(1):37-50
[34] Follett R F, Vogel K P, Varvel G E, et al. Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy[J]. BioEnergy Research,2012,5(4):866-875
[35] Jung J Y, Lal R. Impacts of nitrogen fertilization on biomass production of switchgrass (Panicum Virgatum L.) and changes in soil organic carbon in Ohio[J]. Geoderma,2011,166(1):145-152
[36] Fontaine S, Bardoux G, Abbadie L, et al. Carbon input to soil may decrease soil carbon content[J]. Ecology Letters,2004,7:314-320
[37] Wilson G W T, Rice C W, Rillig M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi:results from long-term field experiments[J]. Ecology Letters,2009,12(5):452-461
[38] Rillig M C, Mardatin N F, Leifheit E F, et al. Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates[J]. Soil Biology & Biochemistry,2010,42(7):1189-1191
[39] Qian K M, Wang L P, Yin N N. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil[J]. International Journal of Mining Science and Technology,2012,22(4):553-557
[40] Wallander H, Nilsson L O, Hagerberg D, et al. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field[J]. New Phytologist,2001,151(3):753-760
[41] Balesdent J, Mariotti A. Measuring of soil organic matter turnover using 13C abundance[C]//Boutton T W, Yamasaki S, eds. Mass Spectroscopy of Soils. New York:Marcel Dekker,1996:83-111
[42] Del Galdo I, Six J, Peressotti A, et al. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes[J]. Global Change Biology,2003,9(8):1204-1213
[43] Godbold D L, Fritz H W, Jentschke G, et al. Root turnover of Norway spruce (Picea abies) is affected by soil acidity and contributes strongly to forest floor litter[J]. Tree Physiology,2003,23:915-921
[44] Walder F, Niemann H, Lehmann M F, et al. Tracking the carbon source of arbuscular mycorrhizal fungi colonizing C3 and C4 plants using carbon isotope ratios (δ13C)[J]. Soil Biology and Biochemistry,2013,58:341-344
[45] Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature,2001,413:297-299
[46] Talbot J M, Allison S D, Treseder K K. Decomposers in disguise:mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology,2008,22(6):955-963
[47] Yang H S, Yuan Y, Zhang Q, et al. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient[J]. Catena,2011,87(1):70-77
[48] Schroeder-moreno M S, Greaver T L, Wang S X, et al. Mycorrhizal-mediated nitrogen acquisition in switchgrass under elevated temperatures and N enrichment[J]. GCB Bioenergy.2012,4(3):266-276
[49] Alguacil M M, Torrecillas E, Hernández G, et al. Changes in the diversity of soil arbuscular mycorrhizal fungi after cultivation for biofuel production in a Guantanamo (Cuba) tropical system[J]. PlOS One, 2012,7(4):e34887. doi:10.1371/journal.pone.0034887 |