[1] 张衷华,王化,唐中华,等. 松嫩草地不同降水区土壤盐碱化程度与羊草生产力关系的比较研究[J]. 草地学报,2016,24(3):590-597 [2] 李彬,王志春,孙志高,等. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究,2005,23(2):154-158 [3] 贾利霞. 盐胁迫对草原3号杂花苜蓿的影响[D]. 呼和浩特:内蒙古农业大学,2008:2 [4] 李波,于海龙. 苏打盐碱胁迫下不同来源苜蓿品种抗盐性综合评价[J]. 草地学报,2017,25(1):204-208 [5] 杨晓晖,王葆芳,江泽平. 乌兰布和沙漠东北缘三种豆科绿肥植物生物量和养分含量及其对土壤肥力的影响[J]. 生态学杂志,2005,24(10):1134-1138 [6] 张玉霞,崔禄,郭园,等. 23个紫花苜蓿品种种子萌发期耐盐碱性的综合评价[J]. 种子,2015,34(10):71-74 [7] Li X J,Yang M F,Zhu Y,et al. Proteomic analysis of salt stress responses in rice shoot[J]. Journal of Plant Biology,2011,54(6):384-395 [8] 霍晨敏,赵宝存,葛荣朝,等. 小麦耐盐突变体盐胁迫下的蛋白质组分析[J]. 遗传学报,2004,31(12):1408-1414 [9] Mortazavi A,Williams B A,Mccue K,et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq.[J]. Nature Methods,2008,5(7):621 [10] Latosinska A,Vougas K,Makridakis M,et al.Comparative Analysis of Label-Free and 8-Plex iTRAQ Approach for Quantitative Tissue Proteomic Analysis.Exceptional language and linguistics[J]. Academic Press,2015,9(2):111-124 [11] 裴翠明,张振亚,马进. 南方型紫花苜蓿苗期叶片盐胁迫差异蛋白分析[J]. 农业生物技术学报,2016,24(11):1629-1642 [12] 马进,郑钢,裴翠明,等. 基于iTRAQ质谱分析技术筛选南方型紫花苜蓿根部响应盐胁迫差异表达蛋白[J]. 农业生物技术学报,2016,24(4):497-509 [13] 徐幼平,徐秋芳,蔡新忠. 适于双向电泳分析的番茄叶片总蛋白提取方法的优化[J]. 浙江农业学报,2007,19(2):71-74 [14] Danon A. Environmentally-induced oxidative stress and its signaling[J]. Photosynthesis,2011:319-330 [15] Chaves M M,Flexas J,Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103(4):551-560 [16] Zhang H,Han B,Wang T,et al. Mechanisms of plant salt response:insights from proteomics[J]. Journal of Proteome Research,2012,11(1):49-67 [17] 吕亚,安飞飞,宋雁超,等. 木薯叶片光合作用日变化的差异蛋白分析[J]. 湖南农业大学学报(自然科学版),2016,42(3):256-261 [18] Zhan S C,Tuan P A,Li X H,et al. Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense[J]. Bmc Genomics,2013,14(1);802 [19] Bonawitz N D,Chapple C. The genetics of lignin biosynthesis:connecting genotype to phenotype[J]. Annual Review of Genetics,2010,44(1):337-363 [20] Vanholme R,Storme V,Vanholme B,et al. A systems biology view of responses to lignin biosynthesis perturbations in arabidopsis[J]. Plant Cell,2012,24(9):3506-3529 [21] Vargas L,Cesarino I,Vanholme R,et al. Improving total saccharification yield of arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants[J]. Biotechnology for Biofuels,2016,9(1):139 [22] Vogt T. Phenylpropanoid Biosynthesis. Molecular Plant,2010,3(1):2-20 [23] 田国忠,李怀方,裘维蕃. 植物过氧化物酶研究进展[J]. 植物科学学报,2001,19(4):332-344 [24] Petrussa E,Braidot E,Zancani M,et al. Plant flavonoids biosynthesis,transport and involvement in stress responses[J]. International Journal of Molecular Sciences,2013,14(7):14950-14973 [25] Kitamura S. Transport of flavonoids:from cytosolic synthesis to vacuolar accumulation[J]. The Science of Flavonoids,2006:123-146 [26] Bharti P,Mahajan M,Vishwakarma A K,et al. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco[J]. Journal of Experimental Botany,2015,66(19):5959-5969 [27] Wei J,Cong R,Li S,et al. Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress[J]. Frontiers in Plant Science,2016,7(35):1553-1562 [28] Nikalje G C,Variyar P S,Joshi M V,et al. Temporal and spatial changes in ion homeostasis,antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum(L.) L[J]. Plos One,2018,13(4):e0193394 |