[1] Singh M,Singh A,Prasad S M,et al. Regulation of plants metabolism in response to salt stress:an omics approach[J]. Acta Physiologiae Plantarum,2017,39(2):48-62 [2] Yin J,Jia J,Lian Z,et al. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage[J]. Ecotoxicology and Environmental Safety,2019,169:8-17 [3] Paul S,Roychoudhury A. Transgenic plants for improved salinity and drought tolerance[M]. Springer:Biotechnologies of Crop Improvement,2018:141-181 [4] Shabala S. Learning from halophytes:physiological basis and strategies to improve abiotic stress tolerance in crops[J]. Annals of Botany,2013,12(7):1209-1221 [5] Himabindu Y,Chakradhar T,Reddy M C,et al. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes[J]. Environmental and Experimental Botany,2016(124):39-63 [6] 刘一明,程凤枝,王齐,等. 四种暖季型草坪植物的盐胁迫反应及其耐盐阈值[J]. 草业学报,2009,18(3):192-199 [7] Duncan R. Environmental compatibility of seashore paspalum (saltwater couch) for golf courses and other recreational uses. II. management protocols[J]. International Turfgrass Society Research Journal 1999,8(2):1216-1230 [8] Lee G,Carrow R N,Duncan R R. Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes[J]. Plant Science,2004,166(6):1417-1425 [9] Pompeiano A,Di Patrizio E,Volterrani M,et al. Growth responses and physiological traits of seashore paspalum subjected to short-term salinity stress and recovery[J]. Agricultural Water Management,2016(163):57-65 [10] Lee G,Duncan R R,Carrow R N. Salinity tolerance of seashore paspalum ecotypes:shoot growth responses and criteria[J]. HortScience,2004,39(5):1138-1142 [11] Xiao-Qing Y,Jian-Ming S,Liu-Fang L,et al. Acquirement of chilling tolerant mutant by somatic screening of low temperature in sea Dallisgrass (Paspalum vaginatum Sw.)[J]. Acta Agrestia Sinica,2010,18(1):97-102 [12] Serena M,Schiavon M,Sallenave R,et al. Nitrogen fertilization of warm-season turfgrasses irrigated with saline water from varying irrigation systems. 1. Quality,spring green-up and fall colour retention[J]. Journal of agronomy and crop science,2018,204(3):252-264 [13] Acosta-Motos J,Ortuño M,Bernal-Vicente A,et al. Plant responses to salt stress:adaptive mechanisms[J]. Agronomy,2017,7(1):18-52 [14] Adabnejad H,Kavousi H R,Hamidi H,et al. Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fuscaL. in response to salt and cadmium stresses[J]. Molecular Biology Research Communications,2015,4(3):133-142 [15] Almeida D M,Margarida O M,Saibo N J M. Regulation of Na+ and K+ homeostasis in plants:towards improved salt stress tolerance in crop plants[J]. Genetics and Molecular Biology,2017,40(1):326-345 [16] Roy S,Chakraborty U. Salt tolerance mechanisms in salt tolerant grasses (STGs) and their prospects in cereal crop improvement[J]. Botanical Studies,2014,55(1):31-40 [17] Shabala S. Learning from halophytes:physiological basis and strategies to improve abiotic stress tolerance in crops[J]. Annals of botany,2013,112(7):1209-1221 [18] Uddin M K,Juraimi A S,Ismail M R,et al. The effect of salinity on growth and ion accumulation in six turfgrass species[J]. Plant Omics,2012,5(3):244-252 [19] Pessarakli M,Touchane H. Growth responses of bermudagrass and seashore paspalum under various levels of sodium chloride stress[J]. Journal of Food Agriculture and Environment,2006,4(3):240-243 [20] Pompeiano A,Giannini V,Gaetani M,et al. Response of warm-season grasses to N fertilization and salinity[J]. Scientia Horticulturae,2014,177:92-98 [21] Zhang J L,Shi H. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis research,2013,115(1):1-22 [22] Berndt W L. Salinity affects quality parameters of ‘SeaDwarf’ seashore paspalum[J]. HortScience,2007,42(2):417-420 [23] 钟小仙,邹轶,张建丽,等. 海盐胁迫对海滨雀稗植株形态与生长的影响[J]. 江苏农业科学,2009(6):235-236 [24] 陈鹏程,陈析丰,马伯军,等. 植物耐盐性与钠离子动态平衡研究进展[J]. 浙江师范大学学报(自然科学版),2016,39(2):207-214 [25] 王甜甜,郝怀庆,冯雪,等. 植物HKT蛋白耐盐机制研究进展[J]. 植物学报,2018,53(05):139-154 [26] Perveen S,Iqbal M,Parveen A,et al. Exogenous triacontanol-mediated increase in phenolics,proline,activity of nitrate reductase,and shoot k+ confers salt tolerance in maize (Zea mays L.)[J]. Brazilian Journal of Botany,2017,40(1):1-11 [27] Wang H,Shabala L,Zhou M,et al. Hydrogen peroxide-induced root Ca2+ and K+ fluxes correlate with salt tolerance in cereals:towards the cell-based phenotyping[J]. International Journal of Molecular Sciences,2018,19(3):702-720 [28] Uddin M K,Juraimi A S,Ismail M R,et al. Effect of salinity stress on nutrient uptake and chlorophyll content of tropical turfgrass species[J]. Australian Journal of Crop Science,2011,5(6):620-631 [29] Fontenot D,Bush E,Beasley J,et al. Evaluating Bermudagrass (Cynodon dactylon),Seashore Paspalum (Paspalum vaginatum),and Weeping Lovegrass (Eragrostis curvula),as a Vegetative Cap for Industrial Brine Landform Stabilization and Phytoremediation[J]. Journal of Plant Nutrition,2015,38(2):237-245 [30] 轶铁,顾洪如,钟小仙,等. 海盐胁迫对海滨雀稗生长及植株体内阳离子含量的影响[J]. 草业科学,2009,26(04):117-120 [31] Per T S,Khan N A,Reddy P S,et al. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance:Phytohormones,mineral nutrients and transgenics[J]. Plant Physiology and Biochemistry,2017,115:126-140 [32] Bhusan D,Das D K,Hossain M,et al. Improvement of salt tolerance in rice (Oryza sativa L.) by increasing antioxidant defense systems using exogenous application of proline[J]. Australian Journal of Crop Science,2016,10(1):50-61 [33] Kaur G,Asthir B. Proline:a key player in plant abiotic stress tolerance[J]. Biologia Plantarum,2015,59(4):609-619 [34] Roychoudhury A,Banerjee A. Endogenous glycine betaine accumulation mediates abiotic stress tolerance in plants[J]. Trop Plant Res,2016(3):105-111 [35] Lee G,Carrow R N,Duncan R R,et al. Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum[J]. Environmental and Experimental Botany,2008,63(1):19-27 [36] Lee G,Carrow R N,Duncan R R. Growth and water relation responses to salinity stress in halophytic seashore paspalum ecotypes[J]. Scientia horticulturae,2005,104(2):221-236 [37] 张昆,李明娜,曹世豪,等. 植物盐胁迫下应激调控分子机制研究进展[J]. 草地学报,2017,25(02):226-235 [38] 张燕,朱慧森,白永超,等. 3个居群野生草地早熟禾耐盐性比较研究[J]. 草地学报,2018(05):1215-1222 [39] Parker R,Flowers T J,Moore A L,et al. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina[J]. Journal of Experimental Botany,2006,57(5):1109-1118 [40] Komatsu S,Konishi H,Shen S,et al. Rice proteomics:a step toward functional analysis of the rice genome[J]. Molecular & Cellular Proteomics,2003,2(1):2-10 [41] Puyang X,An M,Han L,et al. Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars[J]. Ecotoxicology and Environmental Safety,2015(117):96-106 [42] 贾新平,邓衍明,孙晓波,等. 盐胁迫对海滨雀稗生长和生理特性的影响[J]. 草业学报,2015,(12):204-212 [43] Liu Y,Du H,He X,et al. Identification of differentially expressed salt-responsive proteins in roots of two perennial grass species contrasting in salinity tolerance[J]. Journal of Plant Physiology,2012,169(2):117-126 [44] Marcum K B,Murdoch C L. Salinity tolerance mechanisms of six C4 turfgrasses[J]. Journal of the American Society for Horticultural Science,1994,119(4):779-784 [45] 李静思,黄宁,麻加欣,等. 4个海滨雀稗对低温胁迫的生理响应及抗寒性比较[J]. 草地学报,2018,26(6):1444-1448 [46] 柯黄婷,沈益新. 龙爪茅与海滨雀稗抗寒性比较[J]. 草原与草坪,2009(4):7-11 [47] Baier M,Bittner A,Prescher A, et al. Preparing plants for improved cold tolerance by priming[J]. Plant,Cell & Environment,2019,42(3):782-800 [48] 余土元,陈平,张坤英,等. 广州地区几种草坪草低温胁迫效应初报[J]. 草业科学,2006,23(8):85-88 [49] Javadian N,Karimzadeh G,Mahfoozi S,et al. Cold-induced changes of enzymes,proline,carbohydrates,and chlorophyll in wheat[J]. Russian Journal of Plant Physiology,2010,57(4):540-547 [50] 刘湘林,陈跃进,徐庆国等. 草坪草海滨雀稗的抗寒机理研究[J]. 安徽农业科学,2011,39(16):9539-9541 [51] 陈跃进,喻敏,萧洪东,等. 2种暖季型草坪草抗性生理指标的对比研究[J]. 草业科学,2006,23(9):116-118 [52] Jiang M,Zhang J. Effect of abscisic acid on active oxygen species,antioxidative defence system and oxidative damage in leaves of maize seedlings[J]. Plant and Cell Physiology,2001,42(11):1265-1273 [53] 刘次桃,王威,毛毕刚,等. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传,2018,40(3):171-185 [54] 喻敏,陈跃进,萧洪东,等. 硼钼对低温下草坪草海滨雀稗活性氧代谢的影响[J]. 作物学报,2005,31(6):755-759 [55] 刘碧容,甄畅迪,萧洪东,等. 硼对草坪草超氧化物歧化酶活性、超氧阴离子产生速率和MDA含量的影响[J]. 华中农业大学学报,2008,27(3):378-381 [56] 区焯林,喻敏,王灼明,等. 硼、钼、硅对草坪草海滨雀稗CAT和POD活性的影响[J]. 韶关学院学报,2009,30(6):57-60 [57] He Y,Xiao H,Wang H,et al. Effect of silicon on chilling-induced changes of solutes,antioxidants,and membrane stability in seashore paspalum turfgrass[J]. Acta Physiologiae Plantarum,2010,32(3):487-494 [58] Harivandi M,Davis W,Gibeault V,et al. Selecting the Best Turfgrass 1[J]. Operations Research,1991(4):570-585 [59] 唐欣. 六种暖季型草坪草生物学特性及坪用性状研究[D]. 长沙:湖南农业大学,2010:55-60 [60] Cardona C A,Duncan R R,Lindstrom O. Low temperature tolerance assessment in Paspalum[J]. Crop Science,1997,37(4):1283-1291 [61] Cyril J,Powell G L,Duncan R R,et al. Changes in membrane polar lipid fatty acids of Seashore Paspalum in response to low temperature exposure[J]. Crop Science,2002,42(6):2031-2037 [62] Mohammadi,Reza. Breeding for increased drought tolerance in wheat:a review[J]. Crop & Pasture Science,2018,69(3):223-241 [63] 耿世磊,赵晟,吴鸿. 三种草坪草的茎、叶解剖结构及其坪用性状[J]. 热带亚热带植物学报,2002,10(2):145-151 [64] Cohen I,Netzer Y,Sthein I,et al. Plant growth regulators improve drought tolerance,reduce growth and evapotranspiration in deficit irrigated Zoysia japonica under field conditions[J]. Plant Growth Regulation,2019,88(1):9-17 [65] 黄慧青,周林涛,安勐颖,等. 保水剂对海滨雀稗抗旱性的影响[J]. 西南农业学报,2016,29(8):1828-1833 [66] 徐彦花,谢新春,刘天增,等. 海滨雀稗突变体抗旱性的评价[J]. 热带作物学报,2018,39(2):246-253 [67] Schiavon M,Leinauer B,Serena M,et al. Bermudagrass and Seashore Paspalum establishment from seed using differing irrigation methods and water qualities[J]. Agronomy Journal,2012,104(3):706-714 [68] Bañuelos J,Walworth J,Brown P,et al. Deficit Irrigation of Seashore Paspalum and Bermudagrass[J]. Agronomy Journal,2011,103(6):1567-1576 [69] Abbas M S. Drought resistance strategies of Seashore Paspalum cultivars at different mowing heights[J]. Hortscience a Publication of the American Society for Horticultural Science,2014,49(49):221-229 [70] 郭君,向佐湘. 五种草坪草的蒸散量研究[J]. 作物研究,2009,23(3):197-200 [71] Zhou Y,Lambrides C J,Kearns R,et al. Water use,water use efficiency and drought resistance among warm-season turfgrasses in shallow soil profiles[J]. Functional Plant Biology,2012,39(39):116-125 [72] Kim K S,Beard J B,Sifers S I. Drought resistance comparisons among major warm-season turfgrasses[J]. United States Golf Association Green Section,1988(10):12-15 [73] Murdoch C,Deputy J,Hensley D,et al. Adaptation of turfgrasses in Hawaii[J]. University of Hawaii,1998(10):1-4 [74] 钟小仙,刘智微,常盼盼,等. 秋水仙素诱导获得自交结实的海滨雀稗体细胞突变体[J]. 草业学报,2013,22(6):205-212 [75] Fricker C,Wipff J K,Duncan R R. Hybrid seashore paspalum available from seed called ‘Sea Spray’:U.S,Patent:7262341[P]. 2007-8-28 [76] 杨勇,胡龙兴,刘志武,等. 过渡带气候区高尔夫球场草种的适应性及综合质量评价[J]. 草地学报,2016,24(2):393-399 [77] 常盼盼,钟小仙,刘智微. 海滨雀稗体细胞突变体SP2008-3的特异性分析[J]. 草业学报,2012,21(6):207-212 [78] 刘智微,钟小仙,钱晨,等. 自交结实海滨雀稗新品系生长特性及坪用质量评价[J]. 中国草地学报,2016,38(6):85-92 [79] 钟小仙,刘智微,钱晨,等. 海盐胁迫对海雀稗新品系SP2008-3植株形态与生长量的影响[J]. 江苏农业科学,2016(2):285-287 [80] 罗小波,向佐湘,胡立群. 09-1海滨雀稗草坪坪用性状评价[J].作物研究,2013,27(1):57-61 [81] 刘天增,谢新春,张巨明. 海滨雀稗60Co-γ辐射诱变突变体筛选[J]. 草业学报,2017,26(7):62-70 [82] 李伟玲,刘君,于景金,等. 海滨雀稗再生体系的建立[J]. 中国草地学报,2013,35(4):19-24 [83] Wu X,Shi H,Chen X,et al. Establishment of Agrobacterium-mediated transformation of seashore paspalum (Paspalum vaginatum O. Swartz)[J]. In Vitro Cellular & Developmental Biology-Plant,2018,54(5):545-555 |