[1] 杜家纬. 植物-昆虫间的化学通讯及其行为控制[J]. 植物生理学报,2001,27(03):193-200 [2] 方精云,柯金虎,唐志尧,等. 生物生产力的"4P"概念、估算及其相互关系[J]. 植物生态学报,2001,25(04):32-37 [3] 张倩凌. 影响植物呼吸作用的相关因素[J]. 农家参谋,2017,21:32 [4] 孙红英. 人工湿地高氮水平下植物多样性对温室气体释放的效应及机制[D]. 杭州:浙江大学,2013:64-65 [5] Keppler F,Hamilton T J G,Braβ M,et al. Methane emissions from terrestrial plants under aerobic conditions[J]. Nature,2006,439(7073):187-191 [6] 苗秀妍. 丛枝菌根真菌和微肥施用对大豆生长及锌、硒积累的影响[D]. 南宁:广西大学,2019:19 [7] 徐敏,史庆华,李敏. AM真菌对姜生长和产量的影响[J]. 山东农业科学,2002,04:22-23 [8] 赵金莉,贺学礼. AM真菌对油蒿生长和抗旱性的影响[J]. 华北农学报,2007,22(05):184-188 [9] 张伟珍,段廷玉. AM真菌对箭筈豌豆响应豌豆蚜取食的影响[J]. 草地学报,2019,27(06):1518-1525 [10] 王桂君,夏霜,崔亚男,等. AM真菌对植物抗逆性的影响及机制探讨[J]. 长春师范大学学报,2019,38(12):79-83 [11] 王倡宪,李晓林,秦岭,等. 利用丛枝菌根真菌提高植物抗病性研究进展[J]. 中国生物防治,2007,S1:64-69 [12] 高萍,李芳,郭艳娥,等. 丛枝菌根真菌和根瘤菌防控植物真菌病害的研究进展[J]. 草地学报,2017,25(02):236-242 [13] Sun X G,Tang M. Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor[J]. South African Journal of Botany,2013,88:373-379 [14] Babikova Z,Gilbert L,Bruce T,et al. Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission[J]. Functional Ecology,2014,28(2):375-385 [15] Dreher D,Baldermann S,Schreiner M,et al. An arbuscular mycorrhizal fungus and a root pathogen induce different volatiles emitted by Medicago truncatula roots[J]. Journal of Advanced Research,2019,19:85-90 [16] Schausberger P,Peneder S,Jürschik S,et al. Mycorrhiza changes plant volatiles to attract spider mite enemies[J]. Functional Ecology,2012,26(2):441-449 [17] Rapparini F,Llusià J,Peñuelas J. Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L.[J]. Plant Biology,2008,10(1):108-122 [18] Meier A R,Hunter M D. Mycorrhizae alter constitutive and herbivore-induced volatile emissions by milkweeds[J]. Journal of chemical ecology,2019,45(7):610-625 [19] 李洋,严俊鑫,陈晓玲. AM真菌对植物虫害防治作用研究进展[J]. 农业生物技术学报,2019,27(09):1692-1702 [20] Saunier A,Mpamah P,Biasi C,et al. Microorganisms in the phylloplane modulate the BVOC emissions of Brassica nigra leaves[J]. Plant signaling & behavior,2020,15(3):1728468 [21] Kesselmeier J,Staudt M J. Biogenic volatile organic compounds (VOC):An overview on emission,Physiology and Ecology[J]. Journal of Atmospheric Chemistry,1999,33(1):23-88 [22] Peñuelas J,Llusià J. Plant VOC emissions:making use of the unavoidable[J]. Trends in Ecology & Evolution,2004,19(8):402-404 [23] Dicke M,Baldwin I T. The evolutionary context for herbivore-induced plant volatiles:beyond the ‘cry for help’[J]. Trends in plant science,2010,15(3):167-175 [24] Salgado-Garciglia R,Carreón-Abud Y,TorresMartínez R,et al. Arbuscular mycorrhizal symbiosis increases the content of volatile terpenes and plant performance in Satureja macrostema (Benth.) Briq[J]. Boletin Latinoamericano Y Del Caribe De Plantas Medicinales Y Aromaticas,2015,14(4):273-279 [25] Bais H P,Dattatreya B S,Ravishankar G A. Production of volatile compounds by hairy root cultures of Cichorium intybus L under the influence of fungal elicitors and their analysis using solid-phase micro extraction gas chromatography-mass spectrometry[J]. Journal of the Science of Food and Agriculture,2003,83(8):769-774 [26] Vannette R L,Mark H D. Plant defence theory re-examined:nonlinear expectations based on the costs and benefits of resource mutualisms[J]. Journal of Ecology,2011,99(1):66-76 [27] Leitner M,Kaiser R,Hause B,et al. Does mycorrhization influence herbivore-induced volatile emission in Medicago truncatula?[J]. Mycorrhiza,2010,20(2):89-101 [28] Fontana A,Reichelt M,Hempel S,et al. The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L.[J]. Journal of chemical ecology,2009,35(7):833-843 [29] Antunes V,Cardoso E J B N. Growth and nutrient status of citrus plants as influenced by mycorrhiza and phosphorus application[J]. Plant and Soil,1991,131(1):11-19 [30] Jakobsen I,Robson L K A D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots[J]. New Phytologist,1992,120(3):371-379 [31] Marschner H,Dell B. Nutrient uptake in mycorrhizal symbiosis[J]. Plant and Soil,1994,159(1):89-102 [32] Prasad A,Kumar S,Khaliq A,et al. Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.)[J]. Biology and Fertility of Soils,2011,47(8):853-861 [33] Strack D,Fester T. Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots[J]. The New phytologist,2006,172(1):22-34 [34] Trindade R D,Almeida L,Xavier L,et al. Arbuscular mycorrhizal fungi colonization promotes changes in the volatile compounds and enzymatic activity of lipoxygenase and phenylalanine ammonia lyase in Piper nigrum L. ‘Bragantina’[J]. Plants-Basel,2019,8(11):442 [35] Pinto-Zevallos D M,Martins C B C,Pellegrino A C,et al. Volatile organic compounds in induced plant defense against herbivorous insects[J]. Quimica Nova,2013,36(9):1395-1405 [36] 王少彬. 大气中氧化亚氮的源、汇和环境效应[J]. 环境保护,1994,04:23-27 [37] Singh B K,Bardgett R D,Smith P,et al. Microorganisms and climate change:terrestrial feedbacks and mitigation options[J]. Nature reviews Microbiology,2010,8(11):779-790 [38] Panek J A,Matson P A,Ortíz-Monasterio I,et al. Distinguishing nitrification and denitrification sources of N2O in a Mexican wheat system using 15N[J]. Ecological Applications,2000,10(2):506-514 [39] Xu J-Z,Peng S-Z,Hou H-J,et al. Gaseous losses of nitrogen by ammonia volatilization and nitrous oxide emissions from rice paddies with different irrigation management[J]. Irrigation Science,2013,31(5):983-994 [40] Storer K E,Coggan A,Ineson P,et al. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots[J]. New Phytologist,2018,220(4):1285-1295 [41] Liang J F,An J,Gao J Q,et al. Interactive effects of biochar and AMF on plant growth and greenhouse gas emissions from wetland microcosms[J]. Geoderma,2019,346:11-17 [42] Lazcano,Cristina,Jackson,et al. Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes[J]. Soil Biology & Biochemistry,2014,74:184-192 [43] Zhang X,Wang L,Ma F,et al. Effects of arbuscular mycorrhizal fungi on N2O emissions from rice paddies[J]. Water Air and Soil Pollution,2015,226(7):222.1-222.10 [44] 张雪. 丛枝菌根真菌对稻田系统碳氮元素平衡的影响研究[D]. 哈尔滨:哈尔滨工业大学,2016:46-110 [45] Cavagnaro T R,Barrios-Masias F H,Jackson L E. Arbuscular mycorrhizas and their role in plant growth,nitrogen interception and soil gas efflux in an organic production system[J]. Plant and Soil,2012,353(1-2):181-194 [46] Teutscherova N,Vazquez E,Arango J,et al. Native arbuscular mycorrhizal fungi increase the abundance of ammonia-oxidizing bacteria,but suppress nitrous oxide emissions shortly after urea application[J]. Geoderma,2019,338:493-501 [47] Joos F,Spahni R. Rates of change in natural and anthropogenic radiative forcing over the past 20000 years[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(5):1425-1430 [48] 张含. 大气二氧化碳、全球变暖、海洋酸化与海洋碳循环相互作用的模拟研究[D]. 杭州:浙江大学,2018:19 [49] 陈通平,李建军,刘琪琪,等. 二氧化碳减排综述[J]. 四川化工,2015,18(05):52-54 [50] 王慧,周广胜,蒋延玲,等. 降水与CO2浓度协同作用对短花针茅光合特性的影响[J]. 植物生态学报,2012,36(07):597-606 [51] 潘根兴,李恋卿,张旭辉. 土壤有机碳库与全球变化研究的若干前沿问题——兼开展中国水稻土有机碳固定研究的建议[J]. 南京农业大学学报,2002(03):100-109 [52] 穆少杰,朱超,周可新,等. 内蒙古草地退化防治对策及碳增汇途径研究[J]. 草地学报,2017,25(02):217-225 [53] Wallace L L. Growth,morphology and gas exchange of mycorrhizal and nonmycorrhizal Panicum coloratum L. a C4 grass species,under different clipping and fertilization regimes[J]. Oecologia,1981,49(2):272-278 [54] Estrada-Luna A A,Davies F T,Egilla J N. Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.) during ex vitro acclimatization and plant establishment[J]. Mycorrhiza,2000,10(1):1-8 [55] Davies F T,Puryear J D,Newton R J,et al. Mycorrhizal fungi increase chromium uptake by sunflower plants:Influence on tissue mineral concentration,growth,and gas exchange[J]. Journal of Plant Nutrition,2002,25(11):2389-2407 [56] Wang W X,Zhang F,Chen Z L,et al. Responses of phytohormones and gas exchange to mycorrhizal colonization in trifoliate orange subjected to drought stress[J]. Archives of Agronomy and Soil Science,2017,63(1):14-23 [57] Caravaca F,Figueroa D,Barea J M,et al. Effect of mycorrhizal inoculation on nutrient acquisition,gas exchange,and nitrate reductase activity of two Mediterranean-autochthonous shrub species under drought stress[J]. Journal of Plant Nutrition,2004,27(1):57-74 [58] Khalvati M A,Hu Y,Mozafar A,et al. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth,water relations,and gas exchange of barley subjected to drought stress[J]. Plant Biology,2005,7(6):706-712 [59] Bethlenfalvay G J,Brown M S,Franson R L. Glycine-glomus-bradyrhizobium symbiosis. 10. relationships between leaf gas-exchange and plant and soil-water status in nodulated,mycorrhizal soybean under drought stress[J]. Plant Physiology,1990,94(2):723-728 [60] Chandrasekaran M,Chanratana M,Kim K,et al. Impact of arbuscular mycorrhizal fungi on photosynthesis,water status,and gas exchange of plants under salt stress-A Meta-Analysis[J]. Frontiers in Plant Science,2019,10:457 [61] Abdel-Fattah G M,Asrar A A,Al-Amri S M,et al. Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange,growth and phosphatase activity of soybean (Glycine max L.) plants[J]. Photosynthetica,2014,52(4):581-588 [62] Davies F T,Potter J R,Linderman R G. Drought resistance of mycorrhizal pepper plants independent of leaf P concentration-response in gas exchange and water relations[J]. Physiologia Plantarum,1993,87(1):45-53 [63] Goicoechea N,Antolín M C,Sánchez-Díaz M. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought[J]. Physiologia Plantarum,1997,100(4):989-997 [64] Syvertsen J P,Graham J H. Influence of vesicular arbuscular mycorrhizae and leaf age on net gas-exchange of Citrus leaves[J]. Plant Physiology,1990,94(3):1424-1428 [65] Syvertsen J P,Graham J H. Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated CO2[J]. Plant and Soil,1999,208(2):209-219 [66] Koide R. The nature of growth depressions in sunflower caused by vesicular-arbuscular mycorrhizal infection[J]. New Phytologist,1985,99(3):449-462 [67] Andrés A,Estrada-Luna,Davies F T. Arbuscular mycorrhizal fungi influence water relations,gas exchange,abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and postacclimatization[J]. Journal of Plant Physiology,2003,160(9):1073-1083 [68] Wu Q S,Zou Y N. Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress[J]. Scientia Horticulturae,2010,125(3):289-293 [69] Latef A A H A,He C X. Effect of arbuscular mycorrhizal fungi on growth,mineral nutrition,antioxidant enzymes activity and fruit yield of tomato grown under salinity stress[J]. Scientia Horticulturae,2011,127(3):228-233 [70] Hajiboland R,Aliasgharzadeh N,Laiegh S F,et al. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants[J]. Plant and Soil,2010,331(1-2):313-327 [71] Schultz R,Andrews S,O'Reilly L,et al. Plant community composition more predictive than diversity of carbon cycling in freshwater wetlands[J]. Wetlands,2011,31(5):965-977 [72] Cavagnaro T R,Barrios-Masias F H,Jackson L E. Arbuscular mycorrhizas and their role in plant growth,nitrogen interception and soil gas efflux in an organic production system[J]. Plant and Soil,2012,353(1-2):181-194 [73] Mo Y,Deng Z H,Gao J Q,et al. Does richness of emergent plants affect CO2 and CH4 emissions in experimental wetlands?[J]. Freshwater Biology,2015,60(8):1537-1544 [74] Cavagnaro T R. The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations:a review[J]. Plant and Soil,2008,304(1-2):315-325 [75] Berta G,Fusconi A,Trotta A. VA mycorrhizal infection and the morphology and function of root systems[J]. Elsevier,1993,33(1):159-173 [76] Al-Karaki G N,Al-Raddad A. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance[J]. Mycorrhiza,1997,7(2):83-88 [77] Abdel-Fattah,Gamal M,Ibrahim,et al. Synergistic effect of arbuscular mycorrhizal fungi and spermine on amelioration of salinity stress of wheat (Triticum aestivum L. cv. gimiza 9)[J]. Australian Journal of Crop Science,2013,7(10):1525-1532 [78] Davies F T,Linderman R G. Short term effects of phosphorus and VA-mycorrhizal fungi on nutrition,growth and development of Capsicum annuum L.[J]. Elsevier,1991,45(3-4):333-338 [79] Zhu X C,Song F B,Liu S Q,et al. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress[J]. Plant and Soil,2011,346(1-2):189-199 [80] Davies F T,Svenson S E,Cole J C,et al. Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought[J]. Tree physiology,1996,16(11-12):985-993 [81] 刘莉,傅志强,王义,等. 早晚稻不同品种甲烷排放的差异与根系特性的相关分析[J]. 西南农业学报,2020,33(03):469-477 [82] 任仁. 温室气体甲烷的人为源及其减排的技术措施[J]. 环境导报,2000,04:42-43 [83] 叶剑峰. 南方柑橘主要病虫害绿色防控探讨[J]. 南方农业,2019,13(35):13-14 [84] 段志英,斯琴. 我国能源消费、碳排放与经济增长关系的实证研究[J]. 内蒙古财经大学学报,2019,17(01):33-36 |