[1] Wright S F,Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science,1996,161:575-586 [2] Driver J D,Holben W E,Rillig M C. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology & Biochemistry,2005,37(1):101-106 [3] 姜琳,万丽,吴磊,等. 衡阳紫色土丘陵坡地不同植被配置模式的生态恢复[J]. 湖南生态科学学报,2019,6(3):1-8 [4] Steinberg P D,Rillig M C. Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin[J]. Soil Biology & Biochemistry,2003,35:191-194 [5] Chern E C,Tsai D W,Ogunseitan O A. Deposition of glomalin-related soil protein and sequestered toxic metals into watersheds[J]. Environmental Science & Technology,2007,41:3566-3572 [6] Wright S F,Upadhyaya A. A survey of soils for aggregate stability and glomalin,a glycoprotein produced by hyphae ofarbuscular mycorrhizal fungi[J]. Plant and Soil,1998,198:97-107 [7] 杨宁,邹冬生,付美云,等. 紫色土丘陵坡地恢复中土壤团聚体特征及其与土壤性质的关系[J]. 生态学杂志,2016,35(9):2361-2368 [8] 杨宁,邹冬生,杨满元,等. 衡阳紫色土丘陵坡地不同恢复阶段植被特征与土壤性质的关系[J]. 应用生态学报,2013,24(1):90-96 [9] 杨宁,邹冬生,杨满元,等. 衡阳紫色土丘陵坡地植被恢复阶段土壤特性的演变[J]. 生态学报,2014,34(10):2693-2701 [10] 郭旭东,傅伯杰,陈利顶,等. 低山丘陵区土地利用方式对土壤质量的影响——以河北省遵化市为例[J]. 地理学报,2001,56(4):447-455 [11] 杨满元,杨宁,欧阳美娟,等. 衡阳紫色土丘陵坡地5种生态恢复模式的效果比较[J]. 草地学报,2020,28(1):177-183 [12] 阙弘,葛阳洋,康福星,等. 南京典型利用方式土壤中球囊霉素含量及剖面分布特征[J]. 土壤,2015,47(4):719-724 [13] 杨宁,邹冬生,杨满元,等. 衡阳紫色土丘陵坡地不同植被恢复阶段土壤微生物群落多样性的变化[J]. 林业科学,2016,52(8):146-156 [14] 杨宁,邹冬生,李建国. 衡阳盆地紫色土丘陵坡地植被恢复模式建设[J]. 草业科学,2010,27(10):10-16 [15] 杨宁,付美云,杨满元,等. 衡阳紫色土丘陵坡地不同土地利用模式下土壤种子库特征[J]. 西北植物学报,2014,34(11):2324-2330 [16] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:25-225 [17] 曹承绵,张志明,周礼恺. 几种土壤蛋白酶活性测定方法的比较[J]. 土壤通报,1982,13(2):39-40 [18] Wright S F,Upadhyaya A,Buyer J S. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis[J]. Soil Biology & Biochemistry,1998,30(13):1853-1857 [19] 唐宏亮,刘龙,王莉,等. 土地利用方式对球囊霉素土层分布的影响[J]. 中国生态农业学报,2009,17(6):1137-1142 [20] 王发园,刘润进. 环境因子对AM真菌多样性的影响[J]. 生物多样性,2001,9(3):301-305 [21] Driver J D,Holben W E,Rillig M C. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology and Biochemistry,2005,37(1):101-106 [22] Treseder K K,Turner K M. Glomalin in ecosystems[J]. Soil Science Society of America Journal,2007,71(4):1257-1266 [23] Comis D. Glomalin:Hiding place for a third of the worlds stored soil carbon[J]. Journal of Australia Farm,2004,14(9):64-66 [24] Lovelock C E,Wright S F,Clark D A,et al. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape[J]. Journal of Ecology,2004,92(2):278-287 [25] 刘飞,杨柯,李括,等. 我国四种典型土类有机碳剖面分布特征[J]. 地学前缘,2011,18(6):20-26 [26] 杨宁,邹冬生,杨满元,等. 衡阳紫色土丘陵坡地恢复过程中土壤微生物生物量与土壤养分演变[J]. 林业科学,2014,50(12):144-150 [27] 杨宁,杨满元,姜琳,等. 衡阳紫色土丘陵坡地植被恢复过程中土壤可矿化碳库特征[J]. 草地学报,2019,27(2):320-325 [28] 刘润进,李晓林. 丛枝菌根及其应用[M]. 北京:科学出版社,2000:158-159 [29] 王诚煜,冯海艳,杨忠芳,等. 内蒙古中北部球囊霉素相关土壤蛋白的分布及其环境影响[J]. 干旱区研究,2013,30(1):22-28 [30] 高秀兵,邢丹,陈瑶,等. 茶树根际球囊霉素相关土壤蛋白含量及其与土壤因子的关系[J]. 茶叶科学,2016,36(2):191-200 [31] Bonser A,Lynch J P,Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris[J]. New Phytologist,1996,132:281-288 [32] 刘灵,廖红,王秀荣,等. 磷有效性对大豆菌根侵染的调控及其与根构型、磷效率的关系[J]. 应用生态学报,2008,19(3):564-568 [33] 毕银丽. 丛枝菌根培养新技术及其对土地复垦生态效应[M]. 北京:地质出版社,2007:74-75 [34] Rillig M C,Allen M F. What is the role of arbuscular mycorrhizal fungi in plant to eco-system response to elevated atomospheric[J]. Mycorrhizal,1999,9(1):91-98 |