[1] Gong X Q,Liu J H. Genetic transformation and genes for resistance to abiotic and biotic stresses in citrus and its related genera[J]. Plant Cell Tissue Organ Culture,2013,113(2):137-147 [2] Gong X Q,Hu J B,Liu J H. Cloning and characterization of FcWRKY40,A WRKY transcription factor from Fortunella crassifolialinked to oxidative stress tolerance[J]. Plant Cell Tissue Organ Culture,2014,119(1):197-210 [3] Liu J H,Peng T,Dai W. Critical cis-acting elements and interacting transcription factors:key players associated with abiotic stress responses in plants[J]. Plant Molecular Biology Reporter,2014,32(2):303-317 [4] Seo D H,Ryu M Y,Jammes F,et al. Roles of four Arabidopsis U-Box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses[J]. Plant Physiology,2012,160(1):556-568 [5] 刘晨. NAC转录因子与乙烯合成及信号转导基因间的相互调控作用[D]. 天津:天津大学,2016:1 [6] Swati P,Pranav P S,Prem S S,et al. NAC proteins:regulation and role in stress tolerance[J]. Trends in Plant Science,2012,17(6):369-381 [7] Ooka H,Satoh K,Doi K,et al.Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research,2003,10(6):239-247 [8] Tran L S,Rie N,Yamaguchi-Shinozaki K,et al. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach[J]. GM Crops,2010,1(1):32-39 [9] Tran L S P,Quach S K,Guttikonda D L,et al. Molecular characterization of stress-inducible GmNAC genes in soybean[J]. molecular genetics and genomics,2009,281(6):647-664 [10] Le D T,Nishiyama R,Watanabe Y,et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in Soybean during development and dehydration stress[J]. DNA Research,2011,18(4):263-276 [11] Nakashima K,Takasaki H,Mizoi J,et al. NAC transcription factors in plant abiotic stress responses[J]. BBA Gene Regulatory Mechanisms,2012,1819(2):97-103 [12] 王春雨,张茜. 植物NAC转录因子功能研究进展[J]. 生物技术通报,2018,34(11):14-20 [13] Su H,Zhang S,Yuan X,et al. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple[J]. Plant Physiology & Biochemistry,2013,71(2):11-21 [14] Ye G S,Ma Y H,Feng Z P,et al. Transcriptomic analysis of drought stress responses of sea buckthorn(Hippophae rhamnoides subsp.sinensis)by RNA-Seq[J]. PLoS One,2018,13(8):e202213 [15] Rushton P J,Bokowiec M T,Han S,et al,Tobacco transcription factors:novel insights into transcriptional regulation in the Solanaceae[J]. Plant Physiology,2008,147(1):280-295 [16] Hu R,Qi G,Kong Y,et al. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa[J]. BMC Plant Biology,2010,10(1):145 [17] Wu Z Y,Xu X Q,Xiong W D,et al. Genome-wide analysis of the NAC gene family in physic nut (Jatropha curcas L.)[J]. PLoS One,2015,10(6):124-132 [18] Zhong R,Lee C,McCarthy R L,et al. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors[J]. Plant and Cell Physiology,2011,52(10):1856-1871 [19] Aida M,Ishida T,Fukaki H,et al. Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant[J]. Plant Cell,1997,9(1):841-857 [20] Raman S,Greb T,Peaucelle A,et al. Theres,Interplay of miR164, cup-shaped cotyledon genes and lateral suppressor controls axillary meristem formation in Arabidopsis thaliana[J]. Plant Journal,2008,55(1):65-76 [21] Guo Y,Gan S. AtNAP,a NAC family transcription factor,has an important role in leaf senescence[J]. Plant Journal,2006,46(4):601-612 [22] Liu Y,Zhang H,Xin D W,et al. Domain analysis and function prediction of TCP transcription factors family in soybean[J]. Soybean Science,2012,31(5):707-717 [23] Kumar S,Stecher G,Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874 [24] Li L,Xu H L,Yang X L,et al. Genome-wide identification,classification and expression analysis of LEA gene family in soybean[J]. Scientia Agricultura Sinica,2011,44(19):3945-3954 [25] Xiang G S,Wang K J,Yan H J,et al. Bioinformatics analysis of MLO protein family in rosaceae plants[J]. Genomics and Applied Biology,2018,37(5):2043-2059 [26] Chen Y,Sun X,Hu S L,et al. Analysis of NAC transcription transcription factor and its domain with secondary growth in Arabidopsis thaliana[J]. Journal of Northwest University,2009,37(5):185-194 [27] 孙欣,上官凌飞,房经贵,等. 葡萄NAC转录因子家族生物信息学分析[J]. 基因组学与应用生物学,2011,30(2):229-242 [28] Horton P,Park K J,Obayashi T,et al. Wolf psort:protein localization predictor[J]. Nucleic Acids Research,2007,35:585-587 [29] Yu C S,Lin C J,Hwang J K. Predicting subcellular localization of proteins for gram-negative bacteria by support vector machines based on N-peptide compositeons[J]. Protein Science,2004,13(6):1402-1406 [30] Emanuelsson O,Nielsen H,Brunak S,et al. Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence[J]. Journal of Molecular Biology,2000,300(4):1005-1016 [31] 刘佳鑫. 葡萄NAC转录因子的表达及生物信息学分析[D]. 大连:辽宁师范大学,2014:9 [32] Bailey T L,Elkan C. The value of prior knowledge in discovering motifs with MEME[J]. Proceedings of the International Conference on Intelligent Systems for Molecular Biology,1995,3:21-29 [33] 李鹏,黄耿青,李学宝. 植物NAC转录因子[J]. 植物生理学通讯,2010,46(3):294-300 [34] 代梦媛,高梅,李文昌. 蓖麻NAC转录因子家族的鉴定及生物信息学分析[J]. 分子植物育种,2020(6),1808-1817 [35] 陈秀玲,王傲雪,张珍珠,等. 番茄NAC转录因子家族的鉴定及生物信息学分析[J]. 植物生理学报,2014,50(4):461-470 [36] 韩雅彭,程琳,杨凌霄,等. 茶树NAC转录因子家族的鉴定及生物信息学分析[J]. 河南大学学报(自然科学版),2017,47(3):301-309 [37] 李伟,韩蕾,钱永强,等. 植物NAC转录因子的种类、特征及功能[J]. 应用与环境生物学报,2011,17(4):596-606 [38] 方志红,王学敏,李俊,等. 白羊草NAC转录因子基因的克隆及表达分析[J]. 草地学报,2013,21(3):590-597 [39] 李春艳,董洁,钟华,等. 白羊草叶片和根系干旱胁迫下microRNAs差异表达分析[J]. 草地学报,2019,27(3):539-546 [40] Dossa K,Xin W,Li D,et al. Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress[J]. MBC Plant Biology,2016,16(1):171-186 [41] Wang B,Guo X,Wang C,et al. Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death[J]. Plant Molecular Biology,2015,87(4):395-411 [42] Niu F,Wang B,Wu F,et al. Canola (Brassica napus L.) NAC103transcription factor gene is a novel player inducing reactive oxygen species accumulation and cell death in plants[J]. Biochemical and Biophysical Research Communications,2014,454(1):30-35 [43] Chen Y,Qiu K,Kuai B,et al. Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis ‘Viridiflavus’)[J]. Physiologia Plantarum,2011,142(4):361-371 [44] Hao Y,Wei W,Song Q,et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant Journal,2011,68(2):302-313 [45] Duan A,Yang X,Feng K,et al. Genome-wide analysis of NAC transcription factors and their response to abiotic stress in celery (Apium graveolens L.)[J]. Computational Biology and Chemistry,2020,84:107186 [46] Zhang J,Li L,Huang L,et al. Maize NAC-domain retained splice variants act as dominant negatives to interfere with the full-length NAC counterparts[J]. Plant Science,2019,289:110256 [47] Shang X G,Yu Y J,Zhu L J,et al. A cotton NAC transcription factor GhirNAC2plays positive roles in drought tolerance via regulating ABA biosynthsis[J]. Plant Science,2020,296:110498 |