[1] 陈培琴,郁松林,詹妍妮,等.植物在高温胁迫下的生理研究进展[J].中国农学通报,2006,22(5):223-227 [2] PRITI K. Plant response to heat stress[J]. Topics in Current Genetics,2004(4):73-101 [3] HUANG B R,XU C P. Identification and characterization of proteins associated with plant tolerance to heat stress[J]. Journal of Integrative Plant Biology,2008,50(10):1230-1237 [4] NOVER L,BHARTI K,DÖRING P,et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress& Chaperones,2001,6(3):177-189 [5] VON KOSKULL-DÖRING P,SCHARF K D,NOVER L. The diversity of plant heat stress transcription factors[J]. Trends in Plant Science,2007,12(10):452-457 [6] CHAUHAN H,KHURANA N,AGARWAL P,et al. Heat shock factors in rice (Oryza sativa L.):genome-wide expression analysis during reproductive development and abiotic stress[J]. Molecular Genetics and Genomics,2011,286(2):171-187 [7] YANG X D,ZHU W M,ZHANG H,et al. Heat shock factors in tomatoes:genome-wide identification,phylogenetic analysis and expression profiling under development and heat stress[J]. PeerJ,2016,4:e1961 [8] GUO J K,WU J,JI Q,et al. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis[J]. Journal of Genetics and Genomics,2008,35(2):105-118 [9] MITTAL D,CHAKRABARTI S,SARKAR A,et al. Heat shock factor gene family in rice:genomic organization and transcript expression profiling in response to high temperature,low temperature and oxidative stresses[J]. Plant Physiology and Biochemistry,2009,47(9):785-795 [10] XUE G P,SADAT S,DRENTH J,et al. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes[J]. Journal of Experimental Botany,2014,65(2):539-557 [11] PANZADE K P,KALE S S,KAPALE V,et al. Genome-wide analysis of heat shock transcription factors in Ziziphus jujuba identifies potential candidates for crop improvement under abiotic stress[J]. Applied Biochemistry and Biotechnology,2021,193(4):1023-1041 [12] NISHIZAWA A,YABUTA Y,YOSHIDA E,et al. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress[J]. The Plant Journal,2006,48(4):535-547 [13] CHARNG Y Y,LIU H C,LIU N Y,et al. A heat-inducible transcription factor,HsfA2,is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology,2007,143(1):251-262 [14] LARKINDALE J,VIERLING E. Core genome responses involved in acclimation to high temperature[J]. Plant Physiology,2008,146(2):748-761 [15] SCHRAMM F,LARKINDALE J,KIEHLMANN E,et al. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis[J]. The Plant Journal,2008,53(2):264-274 [16] YOSHIDA T,SAKUMA Y,TODAKA D,et al. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system[J]. Biochemical and Biophysical Research Communications,2008,368(3):515-521 [17] MEIRI D,BREIMAN A. Arabidopsis ROF1(FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs[J]. The Plant Journal,2009,59(3):387-399 [18] HUANG Y C,NIU C Y,YANG C R,et al. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses[J]. Plant Physiology,2016,172(2):1182-1199 [19] FRIEDRICH T,OBERKOFLER V,TRINDADE I,et al. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis[J]. Nature Communications,2021,12(1):3426 [20] LI B J,JIANG S M,GAO L,et al. Heat shock factor A1s are required for phytochrome-interacting factor 4-mediated thermomorphogenesis in Arabidopsis[J]. Journal of Integrative Plant Biology,2024,66(1):20-35 [21] 解新明,卢小良.海雀稗种质资源的优良特性及其利用价值[J].华南农业大学学报,2004,25(Sup):64-67 [22] PAN L,HU X,LIAO L,et al. Lipid metabolism and antioxidant system contribute to salinity tolerance in halophytic grass seashore Paspalum in a tissue-specific manner[J]. BMC Plant Biology,2023,23(1):337 [23] SUN G C,WASE N,SHU S Q,et al. Genome of Paspalum vaginatum and the role of trehalose mediated autophagy in increasing maize biomass[J]. Nature Communications,2022,13(1):7731 [24] 王曦,汪小我,王立坤,等.新一代高通量RNA测序数据的处理与分析[J].生物化学与生物物理进展,2010,37(8):834-846 [25] MCCOUCH S R. Genomics and synteny[J]. Plant Physiology,2001,125(1):152-155 [26] SONG C,WANG Y. Microsynteny analysis of tomato and peach genome[J]. Semantic Scholar,2010,32(9):966-973 [27] 邹苇鹏,翟佳兴,李迪娜,等.紫花苜蓿NAC基因家族鉴定及在非生物胁迫下的表达模式分析[J].草地学报,2024,32(8):2440-2458 [28] 陈生蓉,史国民,王乐,等.青稞BBX基因家族鉴定及其对UV-B的响应[J].草地学报,2024,32(6):1760-1769 [29] 刘宇.海滨雀稗热激转录因子PvHSFA4a调控耐镉的分子机制[D].南京:南京农业大学,2022:83-87 [30] NISHIZAWA-YOKOI A,NOSAKA R,HAYASHI H,et al. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the hsf signaling network in response to environmental stress[J]. Plant& Cell Physiology,2021,52(5):933-945 [31] 张楠,王映红,王志敏,等.植物热激转录因子家族的研究进展[J].生物工程学报,2021,37(4):1155-1167 |