[1] CHUNMIAO J,J Q S,BO W,et al. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress[J]. Plos One,2017,12(11):e0188742 [2] EULGEM T,RUSHTON J P,ROBATZEK S,et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206 [3] ISHIGURO S,NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Molecular and General Genetics MGG,1994,244(6):563-571 [4] EULGEM T,SOMSSICH IE. Networks of WRKY transcription factors in defense signaling[J]. Current Opinion in Plant Biology,2007,10(4):366-371 [5] 鄂志国,王磊.水稻WRKY基因家族功能研究进展[J].核农学报,2012,26(5):750-755 [6] 倪辉,孙维红,丁乐,等.香樟全基因组WRKY基因家族的鉴定与分析[J].植物科学学报,2022,40(4):513-523 [7] 李辉,康泽培,邱财生,等.红麻WRKY基因家族鉴定及其盐胁迫下的表达分析[J].华北农学报,2022,37(4):71-81 [8] 郝青婷,高伟,闫虎斌,等.绿豆WRKY基因家族的全基因组鉴定及生物信息学分析[J].西北农林科技大学学报(自然科学版),2023,51(5):59-71 [9] 李红,李波,邬婷婷,等.紫花苜蓿耐苏打盐碱相关基因的转录组学分析[J].草地学报,2019,27(4):848-858 [10] 李心,武敬也,陈菲儿,等.MsWRKY33转录调控MsACS2影响紫花苜蓿耐盐性的研究[J].草地学报,2024,32(1):54-65 [11] HEYOUNG L,JOOYOUNG C,CHANGHYUN C,et al. Rice WRKY11 plays a role in pathogen defense and drought tolerance[J]. Rice,2018,11(1):5 [12] 刘佳丽. 羊草WRKY40基因对干旱胁迫的响应机制研究[D].哈尔滨:东北林业大学,2020:63 [13] JIA H,WANG C,WANG F,et al. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana[J]. Plos One,2015,10(3):e0120646 [14] EL-ESAWI M A,AL-GHAMDI A A,ALI H M,et al. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.) [J]. Genes,2019,10(2):163 [15] SUN Y,YU D. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement[J]. Plant Cell Reports,2015,34(8):1295-1306 [16] NIU C F,WEI W,ZHOU Q Y,et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants[J]. Plant Cell Environment,2012,35(6):1156-1170 [17] 周寿荣.草坪地被与人类环境[M].成都:四川科技出版社,1996:82 [18] HANNA W W. Centipedegrass diversity and vnlnerabablity[J]. Crop Science,1995,35(2):320-334 [19] 宗俊勤,牛佳伟,徐芳,等.假俭草花序发育的形态学观察及其与物候期和积温的对应关系[J].植物资源与环境学报,2021,30(5):50-57 [20] 刘建秀,朱雪花,郭爱桂,等.中国假俭草种质资源主要性状变异及其形态类型[J].草地学报,2004(3):183-188 [21] WANG J J,ZI H L,WANG R,et al. A high-quality chromosome-scale assembly of the centipedegrass [Eremochloa ophiuroides(Munro) Hack.] genome provides insights into chromosomal structural evolution and prostrate growth habit[J]. Horticulture Research,2021,8(1):201 [22] 鲁泽东.假俭草突变体抗旱生理分析及抗旱基因筛选[D].长沙:湖南农业大学,2020:14 [23] 卜华虎,王晓清,任志强,等.植物WRKY转录因子家族基因研究进展[J].山西农业科学,2020,48(7):1158-1163 [24] 蒋明,尹龙飞,张志仙,等.二穗短柄草WRKY基因家族成员的鉴定和分析[J].麦类作物学报,2012,32(6):1013-1020 [25] 陈倩,徐晓芸,汪军成,等.基于全长转录组的盐生草WRKY基因家族的鉴定及其盐胁迫响应模式分析[J].草业学报,2022,31(12):146-157 [26] 陈丽飞,李嘉峻,刘云怡慧,等.干旱胁迫下大苞萱草WRKY基因家族成员鉴定及生物信息学分析[J].河南农业科学,2023,52(2):113-123 [27] WEI Y,SHI H,XIA Z,et al. Genome-Wide identification and expression analysis of the WRKY Gene family in cassava[J]. Frontiers in Plant Science,2016(7):25 [28] CANNON S B,MITRA A,BAUMGARTEN A,et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biology,2004(4):10 [29] LI M,ZHANG X,ZHANG T,et al. Genome-wide analysis of the WRKY genes and their important roles during cold stress in white clover[J]. PeerJ,2023(11):e15610 [30] 马培杰,李亚娇,舒健虹,等.百脉根WRKY基因家族生物信息学分析[J].分子植物育种,2023,21(14):4606-4617 [31] HU W J,REN Q Y,CHEN Y L,et al. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses[J]. BMC Plant Biology,2021,21(1):427 [32] SONG Y N,CUI H L,SHI Y,et al. Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress[J]. BMC Genomics,2020,21(1):786 [33] LIU G Y,LI B,LI X,et al. MaWRKY80 positively regulates plant drought stress resistance through modulation of abscisic acid and redox metabolism[J]. Plant Physiology and Biochemistry,2020(156):155-166 [34] HUO T,WANG C T,YU T F,et al. Overexpression of ZmWRKY65 transcription factor from maize confers stress resistances in transgenic Arabidopsis[J]. Scientific Reports,2021,11(1):4024 [35] WANG D,CHEN Q Y,CHEN W W,et al. A WRKY Transcription Factor,EjWRKY17,from Eriobotrya japonica Enhances Drought Tolerance in Transgenic Arabidopsis[J]. International Journal of Molecular Sciences,2021,22(11):5593 [36] GULZAR F,FU J Y,ZHU C Y,et al. Maize WRKY Transcription Factor ZmWRKY79 Positively Regulates Drought Tolerance through Elevating ABA Biosynthesis[J]. International Journal of Molecular Sciences,2021,22(18):10080 [37] JIANG Y J,LIANG G,YU D Q. Activated expression of WRKY57 confers drought tolerance in Arabidopsis[J]. Molecular Plant,2012,5(6):1375-1388 [38] YANG Y,ZHOU Y,CHI Y,et al. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode[J]. Scientific Reports,2017,7(1):17804 [39] WANG C T,RU J N,LIU Y W,et al. The Maize WRKY Transcription Factor ZmWRKY40 Confers Drought Resistance in Transgenic Arabidopsis[J]. International Journal of Molecular Sciences,2018,19(9):2580 [40] WANG C T,RU J N,LIU Y W,et al. Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants[J]. International Journal of Molecular Sciences,2018,19(10):3046 [41] SHEN H,LIU C,ZHANG Y,et al. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice[J]. Plant Molecular Biology,2012,80(3):241-253 |