[1] Rao D E,Chaitanya K V. Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants[J]. Biologia Plantarum,2016,60(2):1-18 [2] 李跃. 紫花苜蓿对干旱的响应:形态、生理以及miRNA组学研究[D]. 北京:中国农业科学院,2017:1 [3] 张锁科. 草地早熟禾发生分蘖时内源激素调控研究[D]. 兰州:甘肃农业大学,2014:1 [4] 牛奎举,张然,赵春旭,等. 草地早熟禾种间原生质体电融合条件的研究[J]. 草原与草坪,2017,37(5):30-34,40 [5] Hu H,Xiong L. Genetic engineering and breeding of drought-resistant crops[J]. Annual Review of Plant Biology,2014,65(1):715-741 [6] Dong Y P,Guo Q,et al. Transcriptome Expression Profiling in Response to Drought Stress in Paulownia australis[J]. International Journal of Molecular Sciences,2014,15(3):4583-4607 [7] Ki-Beom,Moon,Dong-Joo Ahn,Ji-Sun Park,et al. Transcriptome profiling and characterization of drought-tolerant potato plant (Solanum tuberosum L.)[J]. Molecules and cells,2018,41(11):979-992 [8] 赵龙,王舰,王芳. PEG模拟干旱胁迫下马铃薯茎段转录组分析[J]. 西北植物学报,2020(3):403-412 [9] 冷暖,刘晓巍,张娜,等. 草地早熟禾干旱胁迫转录组差异性分析[J]. 草业学报,2017(12):131-140 [10] 牛奎举. 外源5-氨基乙酰丙酸对干旱胁迫下草地早熟禾光合作用的调控机制[D]. 兰州:甘肃农业大学,2018:35-47 [11] Gao F,Zhou J,Deng R Y,et al. Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene,FtMYB9,enhances tolerance to drought and salt stresses in transgenic Arabidopsis[J]. Journal of Plant Physiology,2017(214):81-90 [12] Huang Y J,Zhao H X,Gao F,et al. A R2R3-MYB transcription factor gene,FtMYB13,from Tartary buckwheat improves salt/drought tolerance in Arabidopsis[J]. Plant Physiology and Biochemistry,2018(132):238-248 [13] He G H,Xu J Y,Wang Y X,et al. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis[J]. Bmc Plant Biology,2016(16):116 [14] Dossa K,Wei X,Li D H,et al. Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress[J]. Bmc Plant Biology,2016(16):171 [15] 陈雅君,祖元刚,刘慧民,等. 早熟禾种质资源及其遗传改良研究进展[J]. 园艺学报,2008,35(11):1701-1708 [16] 田彦锋. 甘肃地区8个野生草地早熟禾种质耐践踏性研究[D]. 兰州:甘肃农业大学,2017:3 [17] Grabherr M G,Haas B J,Yassour M,et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology,2011,29(7):644-652 [18] Fu L,Niu B,Zhu Z,et al. CD-HIT:accelerated for clustering the next-generation sequencing data[J]. Bioinformatics,2012,28(23):3150-3152 [19] 赵春旭,马祥,董文科,等. 低温胁迫下不同青海野生草地早熟禾的转录组比较分析[J]. 草地学报,2020(2):305-318 [20] Anders S,Wolfgang H. Differential expression analysis for sequence count data[J]. Genome Biology,2010,11(10):106 [21] Minoru K,Michihiro A,Susumu G,et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research,2008(36):480-484 [22] Xian J P,Wang Y,Niu K J,et al. Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis[J]. Chemosphere,2020(250):126158 [23] 史毅,牛奎举,余倩倩,等. 低温对青海扁茎早熟禾活性氧代谢的影响和相关基因表达分析[J]. 草业学报,2017,26(12):98-107 [24] Livak K,Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods,2000,25(4):402-408 [25] 汤海港,黄艳华,路海博,等. 转录组测序技术及其在能源草基因挖掘和品种选育中的应用前景分析[J]. 草地学报,2016,24(4):731-737 [26] 包秋娟. 干旱胁迫下棉花转录组分析[D]. 乌鲁木齐:新疆大学,2018:18-19 [27] Yang Z,Dai Z,Lu R,et al. Transcriptome analysis of two species of jute in response to polyethylene glycol (PEG)-induced drought stress[J]. Scientific Reports,2017(7):16565 [28] Hu L,Xie Y,Fan S,et al. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress[J]. Plant science,2018(272):276-293 [29] 张翠梅. 不同抗旱性紫花苜蓿响应干旱的生理及分子机制研究[D]. 兰州:甘肃农业大学,2019:100-122 [30] 王美容. 甘蓝型油菜BnWRKY28转录因子功能分析[D]. 武汉:华中农业大学,2015:1-2 [31] 李晓艳,周敬雯,严铸云,等. 基于转录组测序揭示适度干旱胁迫对丹参基因表达的调控[J]. 中草药,2020,51(6):1600-1608 [32] Ranjan A,Sawant S.Genome-wide transcriptomic comparison of cotton (Gossypium herbaceum) leaf and root under drought stress[J]. 3 Biotech,2015,5(4):585-596 [33] 张鹏钰,王国瑞,曹丽茹,等. 干旱胁迫和复水处理下玉米差异表达转录因子基因分析[J]. 农业生物技术学报,2020(2):211-222 [34] 王丽萍,李志刚,谭乐和,等. 植物内源激素研究进展[J]. 安徽农业科学,2011(4):34-36 [35] 孙宪芝,郑成淑,王秀峰. 木本植物抗旱机理研究进展[J]. 西北植物学报,2007(3):629-634 [36] Pustovoitova T N,Zhdanova N E,Zholkevich V N. Changes in the levels of IAA and ABA in cucumber leaves under progressive soil drought[J]. Russian Journal of Plant Physiology,2004,51(4):513-517 [37] 周晏起,卜庆雁. 干旱胁迫下果树内源激素变化规律研究进展[J]. 北方果树,2011(3):1-4 [38] Chae Woo Lim,Woonhee Baek,Jangho Jung,et al. Function of ABA in stomatal defense against biotic and drought stresses[J]. International journal of molecular sciences,2015,16(7):15251-15270 [39] Jorge González-Villagra,Cohen J D,Marjorie M. Reyes-Díaz. Abscisic acid is involved in phenolic compounds biosynthesis,mainly anthocyanins,in leaves of Aristotelia chilensis plants (Mol.) subjected to drought stress[J]. Physiologia Plantarum,2019,165(4):855-866 [40] Sarazin V,Duclercq J,Guillot X,et al. Water-stressed sunflower transcriptome analysis revealed important molecular markers involved in drought stress response and tolerance[J]. Environmental and Experimental Botany,2017(142):45-53 [41] 邱文怡,王诗雨,李晓芳,等. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报,2020,32(7):1317-1328 [42] 韩永芬,李娟,孟军江,等. 菊苣干旱胁迫下内源激素的调节机制研究[J]. 安徽农业科学,2012,40(33):16155-16158 [43] 兰彦平,韩振海,许雪峰. 水分胁迫下苹果实生苗茉莉酸的积累及其与水分的关系[J]. 园艺学报,2004,31(1):16-20 [44] 董桃杏,蔡昆争,张景欣,等. 茉莉酸甲酯(MeJA)对水稻幼苗的抗旱生理效应[J]. 生态环境学报,2007,016(004):1261-1265 [45] 杨艺,常丹,王艳,等. 茉莉酸甲酯对棉花抗旱效果的影响[J]. 西北农业学报,2016,25(9):1333-1341 [46] 王慧. 茉莉酸甲酯在大豆抗旱适应中保护作用的生理响应[D]. 北京:中央民族大学,2011:40-44 [47] Lorenzo,Oscar,Piqueras,et al. Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense[J]. Plant Cell,2003(15):165-178 [48] Dong X J, Zhang X S. Some observations of the adaptations of sandy shrubs to the arid environment in the Mu Us Sandland:leaf water relations and anatomic features[J]. Journal of Arid Environments,2001,48(1):41-48 [49] Lecourieux D,Ranjeva R,Pugin A. Calcium in plant defence-signalling pathways[J]. New Phytologist,2006,171(2):249-269 [50] 翁笑艳,张木清,阮妙鸿,等. 水分胁迫下钙对甘蔗幼苗抗氧化酶活性的影响[J]. 中国农学通报,2007,23(7):273-279 [51] Parvin S,Lee O R,Sathiyaraj G,et al. Interrelationship between calmodulin (CaM) and H2O2 in abscisic acid-induced antioxidant defense in the seedlings of Panax ginseng[J]. Molecular Biology Reports,2012,39(7):7327-7338 [52] 杜明凤. 马尾松抗旱种质应答干旱胁迫的分子机制[D]. 贵阳:贵州大学,2018:7-8 [53] 张孝华,丁海东,张阿英,等. MAPK在水分胁迫下玉米叶片细胞抗氧化损伤中的作用[J]. 南京农业大学学报,2009,32(2):156-160 [54] 李杰,朱延明,齐岩,等. OsMAPK4基因的克隆、序列分析及其植物表达载体的构建[J]. 东北农业大学学报,2005,36(3):324-328 |