[1] HE L, LI A, YIN G, et al. Retrieval of Grassland Aboveground Biomass through Inversion of the PROSAIL Model with MODIS Imagery[J]. Remote Sensing, 2019, 11(13):1597 [2] SCHUCKNECHT A, MERONI M, KAYITAKIRE F, et al. Phenology-based Biomass Estimation to Support Rangeland Management in Semi-arid Environments[J]. Remote Sensing, 2017, 9(5):463 [3] BARRACHINA M, CRISTÓBAL J, TULLA A F. Estimating Above-ground Biomass on Mountain Meadows and Pastures through Remote Sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 38:184-192 [4] 黄家兴, 吴静, 李纯斌, 等. 基于Sentinel-2和Landsat 8数据的天祝县草地地上生物量遥感反演[J]. 草地学报, 2021, 29(9):2023-2030 [5] MOECKEL T, SAFARI H, REDDERSEN B, et al. Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass in Grasslands with Heterogeneous Sward Structure[J]. Remote Sensing, 2017, 9(1):98 [6] 刘靖朝, 熊黑钢, 何旦旦, 等. 受扰土壤全量氮磷钾的光谱反演[J]. 中国沙漠, 2019, 39(2):53-61 [7] 范云豹, 赵文吉, 宫兆宁, 等. 基于高光谱信息的芦苇和香蒲地上干生物量反演方法研究[J]. 湿地科学, 2016, 14(5):654-664 [8] CHEN J, GU S, SHEN M, et al. Estimating Aboveground Biomass of Grassland having a High Canopy Cover:an Exploratory Analysis of In Situ Hyperspectral Data[J]. International Journal of Remote Sensing, 2009, 30(24):6497-6517 [9] ZHAO D, REDDY K R, KAKANI V G, et al. Canopy Reflectance in Cotton for Growth Assessment and Lint Yield Prediction[J]. European Journal of Agronomy, 2007, 26(3):335-344 [10] 赵凤杰, 吴惠惠, 刘朝阳, 等. 高光谱遥感在锡林浩特2种草地类型生产力监测中的应用[J]. 草地学报, 2013, 21(6):1059-1064 [11] 安海波, 李斐, 赵萌莉, 等. 基于优化光谱指数的牧草生物量估算[J]. 光谱学与光谱分析, 2015, 35(11):3155-3160 [12] COSTA V, SERÔDIO J, LILLEBØ AI, et al. Use of Hyperspectral Reflectance to Non-destructively Estimate Seagrass Zostera Noltei Biomass[J]. Ecological Indicators, 2021, 121:107018 [13] FAVA F, COLOMBO R, BOCCHI S, et al. Identification of Hyperspectral Vegetation Indices for Mediterranean Pasture Characterization[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(4):233-243 [14] 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5):107-112, 113, 114 [15] GAO X, HUETE A R, NI W, et al. Optical-biophysical Relationships of Vegetation Spectra without Background Contamination[J]. Remote Sensing of Environment, 2000, 74(3):609-620 [16] MUTANGA O, SKIDMORE A K. Narrow Band Vegetation Indices Overcome the Saturation Problem in Biomass Estimation[J]. International Journal of Remote Sensing, 2004, 25(19):3999-4014 [17] GNYP M L, MIAO Y, YUAN F, et al. Hyperspectral Canopy Sensing of Paddy Rice Aboveground Biomass at Different Growth Stages[J]. Field Crops Research, 2014, 155:42-55 [18] 高宏元, 侯蒙京, 葛静, 等. 基于随机森林的高寒草地地上生物量高光谱估算[J]. 草地学报, 2021, 29(8):1757-1768 [19] BAYARAA B, HIRANO A, PUREVTSEREN M, et al. Applicability of Different Vegetation Indices for Pasture Biomass Estimation in the North-central Region of Mongolia[J]. Geocarto International, 2021, DOI:10.1080/10106049.2021.1974956 [20] 童新, 刘廷玺, 杨大文, 等. 半干旱沙地-草甸区水面蒸发模拟及其影响因子辨识[J]. 干旱区地理, 2015, 38(1):10-17 [21] 张亦然, 刘廷玺, 童新, 等. 基于U型神经网络的沙丘-草甸相间地区无人机影像植被覆盖度提取及其影响因素[J]. 中国沙漠, 2021, 41(3):16-24 [22] JORDAN C F. Derivation of Leaf-area Index from Quality of Light on the Forest Floor[J]. Ecology, 1969, 50(4):663-666 [23] ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation[R]. Greenbelt, MD:NASA/GSFC, 1974 [24] HUETE A R. A Soil-adjusted Vegetation Index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3):295-309 [25] HUETE A R, LIU H Q, BATCHILY K, et al. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS[J]. Remote Sensing of Environment, 1997, 59(3):440-451 [26] LU D S. The Potential and Challenge of Remote Sensing-based Biomass Estimation[J]. International Journal of Remote Sensing, 2006, 27(7):1297-1328 [27] LIANG L, DI L, HUANG T, et al. Estimation of Leaf Nitrogen Content in Wheat using New Hyperspectral Indices and a Random Forest Regression Algorithm[J]. Remote Sensing, 2018, 10(12):1940 [28] WANG Z, ZHANG X, ZHANG F, et al. Estimation of Soil Salt Content using Machine Learning Techniques based on Remote-sensing Fractional Derivatives, a Case Study in the Ebinur Lake Wetland National Nature Reserve, Northwest China[J]. Ecological Indicators, 2020, 119:106869 [29] 韩万强, 靳瑰丽, 岳永寰, 等. 基于高光谱成像技术的伊犁绢蒿荒漠草地主要植物识别参数的筛选[J]. 草地学报, 2020, 28(4):1153-1163 [30] HANSEN P M, SCHJOERRING J K. Reflectance Measurement of Canopy Biomass and Nitrogen Status in Wheat Crops using Normalized Difference Vegetation Indices and Partial Least Squares Regression[J]. Remote Sensing of Environment, 2003, 86(4):542-553 [31] 万余庆, 谭克龙, 周日平. 高光谱遥感应用研究[M]. 北京:科学出版社, 2006:133-134 [32] KHARINTSEV S S, SALAKHOV M K. A Simple Method to Extract Spectral Parameters using Fractional Derivative Spectrometry[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2004, 60(8):2125-2133 [33] CHENG H, WANG J, DU Y, et al. Exploring the Potential of Canopy Reflectance Spectra for Estimating Organic Carbon Content of Aboveground Vegetation in Coastal Wetlands[J]. International Journal of Remote Sensing, 2021, 42(10):3850-3872 |