[1] 王瑞. 模拟增温和降水改变对高寒草甸土壤和植被碳, 氮的影响[D]. 兰州:甘肃农业大学, 2016:1-2 [2] LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438):459-462 [3] 张玉革, 刘月秀, 杨山, 等. 模拟氮沉降和降水增加对弃耕草地土壤微生物学特性的影响[J]. 沈阳大学学报(自然科学版), 2021, 33(1):10-19 [4] 任艳林. 降水改变对樟子松人工林土壤无机氮和净氮矿化速率的影响[J]. 北京大学学报自然科学版, 2012, 48(6):925-932 [5] 闫钟清, 齐玉春, 彭琴, 等. 模拟降水和氮沉降增加对草地生物量影响的研究进展[J]. 草地学报, 2017, 25(6):1165-1170 [6] 吴旭东, 蒋齐, 任小玢, 等. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响[J]. 草业学报, 2021, 30(7):34-43 [7] 杨阳, 章妮, 蒋莉莉, 等. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应[J]. 草地学报, 2021, 29(5):1043-1052 [8] LIU X C, ZHANG S T. Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil[J]. Plant and Soil, 2019, 440(1):11-24 [9] 魏星星, 吴江琪, 李广, 等. 青藏高原湿草甸土壤氮组分对氮添加浓度的响应[J]. 草地学报, 2021, 29(4):677-683 [10] XIAO L, LIU G B, LI P, et al. Direct and indirect effects of elevated CO2 and nitrogen addition on soil microbial communities in the rhizosphere of Bothriochloa ischaemum[J]. Journal of Soils and Sediments, 2019, 19(11):3679-3687 [11] 刘贺永, 何鹏, 蔡江平, 等. 模拟氮沉降对内蒙古典型草地土壤pH和电导率的影响[J]. 土壤通报, 2016, 47(1):85-91 [12] 徐润宏, 朱锦福, 刘泽华, 等. 小泊湖高寒湿地土壤理化性质对氮沉降的短期响应[J]. 西南农业学报, 2021, 34(10):2204-2210 [13] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3):298-310 [14] BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interaction with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57:233-266 [15] 陈智裕, 马静, 赖华燕, 等. 植物根系对根际微环境扰动机制研究进展[J]. 生态学杂志, 2017, 36(2):524-529 [16] 刘路. 氮沉降背景下降水量变化对内蒙古典型草原根系分泌物和根际微生物的影响[D]. 北京:中央民族大学, 2021:2-4 [17] STEFAN K, ANGELA A, JOHANNES I, et al. Drought-Induced Accumulation of Root Exudates Supports Post-drought Recovery of Microbes in Mountain Grassland.[J]. Frontiers in plant science, 2018, 9:1593 [18] 廖李容. 氮添加对白羊草土壤有机碳组分及根系分泌物的影响[D]. 咸阳:中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2021:63 [19] ZHU S S, JORGE M V, DANIEL K M. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize[J]. Applied Soil Ecology, 2016, 107:324-333 [20] MUNNS R. Genes and salt tolerance:Bringing them together[J]. New phytologist, 2005, 167(3):645-663 [21] 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究:历程、现状与展望[J]. 土壤学报, 2022, 59(1):10-27 [22] RAAIJMAKERS J M, MAZZOLA M. Soil immune responses[J]. Science, 2016, 352(6292):1392-1393 [23] HAYAT R, ALI S, AMARA U, et al. Soil beneficial bacteria and their role in plant growth promotion:a review[J]. Annals of Microbiology, 2010, 60(4):579-598 [24] PII Y, PENN A, TERZANO R, et al. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants[J]. Plant Physiology and Biochemistry, 2015, 87:45-52 [25] 代金霞, 田平雅, 张莹, 等. 银北盐渍化土壤中6种耐盐植物根际细菌群落结构及其多样性[J]. 生态学报, 2019, 39(8):2705-2714 [26] 王惠玲, 刁华杰, 崔乐乐, 等. 北方农牧交错带典型草地土壤呼吸及其组分对刈割强度的响应[J]. 草地学报, 2020, 28(5):1403-1411 [27] ZHAO X, ZHU H S, DONG K H, et al. Plant Community and Succession in Lowland Grasslands under Saline-Alkali Conditions with Grazing Exclusion[J]. Agronomy Journal, 2017, 109(5):2428-2437 [28] 段雷, 郝吉明, 谢绍东, 等. 用稳态法确定中国土壤的硫沉降和氮沉降临界负荷[J]. 环境科学, 2002, 23(2):7-12 [29] XU Z W, LI M H, NIKLAUS E Z, et al. Plant functional diversity modulates global environmental change effects on grassland productivity[J]. Journal of Ecology, 2018, 106(5):1941-1951 [30] 朱湾湾, 王攀, 许艺馨, 等. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3):309-320 [31] 王天. 不同氮磷钾肥施用量对油橄榄根系发育及根际微环境的影响[D]. 兰州:甘肃农业大学, 2020:10 [32] VU J C V, GESCH R W, PENNANEN A H, et al. Soybean photosysnthesis, rubisco, and carbohydrate enzymes function at supraoptimal temperatures in elevated CO2[J]. Journal of Plant Physiology, 2000, 158:295-307 [33] ROSEN H A. Modified ninhydrin colorimetric analysis for amino acids[J]. Archives of Biochemistry and Biophysics, 1957, 67(1):10-15 [34] MCCULLEY R L, BURKE I C, LAUENROTH W K. Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plains of North America[J]. Oecologia, 2009, 159(3):571-581 [35] WEI X R, SHAO M A, FU X L, et al. The effects of land use on soil N mineralization during the growing season on the northern Loess Plateau of China[J]. Geoderma, 2011, 160:590-598 [36] 邹亚丽, 牛得草, 杨益, 等. 氮素添加对黄土高原典型草原土壤氮矿化的影响[J]. 草地学报, 2014, 22(3):461-468 [37] TIAN D S, NIU S. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10:1714-1721 [38] 闫钟清, 齐玉春, 董云社, 等.草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制[J]. 草业学报, 2014, 23(6):279-292 [39] 王岩, 刁华杰, 董宽虎, 等. 降水改变与氮添加对晋北盐碱化草地土壤净氮矿化的影响[J]. 应用生态学报, 2021, 32(7):2389-2396 [40] ALBERT G G, CATHERINE P, JORDI S, et al. Root exudate metabolomes change under drought and show limited capacity for recovery[J]. Scientific Reports, 2018, 8(1):12696 [41] XIANG G Q, MA W Y, GAO S W, et al. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO3-induced organic acid secretion in grapevine roots[J]. BMC Plant Biology, 2019, 19(1):383 [42] 肖列, 刘国彬, 李鹏, 等. 氮素添加和CO2浓度升高对白羊草根际和非根际土壤水溶性有机碳、氮的影响[J].应用生态学报, 2017, 28(1):64-70 [43] 王朋强, 吴义兰, 李永富, 等. 植物根系分泌物及微域环境的研究与展望[J]. 乡村科技, 2021, 12(27):96-98 [44] TERZANO R, CESCO S, MIMMO T J. Dynamics, thermodynamics and kinetics of exudates:Crucial issues in understanding rhizosphere process[J]. Plant and Soil, 2015, 386:399-406 [45] HUANGFU C H, LI H Y, CHEN X W, et al. Response of an invasive plant, Flaveria bidentis, to nitrogen addition:a test of form-preference uptake[J]. Biological Invasions, 2016, 18(11):3365-3380 [46] SÖDERBERG K H, BÅÅTH E. The influence of nitrogen fertilisation on bacterial activity in the rhizosphere of barley[J]. Soil Biology and Biochemistry, 2004, 36(1):195-198 [47] AMELIA H, WILLIAM D, JEANETTE N, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress[J]. Journal of Environmental Quality, 2007, 36(3):904-912 |