[1] 袁正通, 范晓丹, 王雪琦, 等. 土壤重金属污染的微生物-植物联合修复技术研究进展[J]. 天津城建大学学报, 2023, 29(4):253-261 [2] 王欢. 修复植物处置技术及重金属迁移的研究进展[J]. 化工技术与开发, 2023, 52(6):52-57, 10 [3] 陈能场, 郑煜基, 何晓峰, 等.《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692 [4] 陆静. 西南地区农业土壤污染状况及防治对策建议[J]. 南方农业, 2018, 12(16):83-86 [5] 凌云. 西南地区典型土壤酸化特征及其对镉、Pb环境行为的影响[D]. 重庆:西南大学, 2022:4 [6] MUHAMMAD D, CHEN F, ZHAO J, et al.Comparison of EDTA-and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia[J]. International Journal of Phytoremediation, 2009, 11(6):558-574 [7] 罗庆. 镉、铅胁迫下东南景天根系分泌物的代谢组学研究[D]. 沈阳:东北大学, 2016:2-3 [8] 张益硕, 周仲魁, 杨顺景, 等. 重金属污染土壤修复原理与技术[J]. 有色金属, 2022, (10):124-134 [9] 姜娜, 杨京民, GAHONZIRE BONHEUR, 等. 牧草在重金属污染土壤治理中的修复和综合利用潜力[J]. 生态与农村环境学报, 2021, 37(5):545-554 [10] 戴悦, 范占煌, 段清明, 等. 草本植物修复重金属污染土壤研究进展[J]. 分子植物育种, 2022(11):1-9 [11] 严晓霞, 杨国柱, 尹卫, 等. 铅和铝胁迫对两种豆科牧草种子萌发及生理生化特性的影响[J]. 青海大学学报, 2018, 36(3):9-14, 20 [12] 杨俊俏. 镉铅胁迫下草地早熟禾和高羊茅幼苗生长及重金属累积特性的比较研究[D]. 扬州:扬州大学, 2014:4-6 [13] NYITRAI P, BÓKA K, GÁSPÁR L, et al.Characterization of the stimulating effect of low-dose stressors in maize and bean seedlings[J]. Journal of Plant Physiology, 2003, 160(10):1175-1183 [14] 周朝彬, 胡庭兴, 胥晓刚, 等. 铅胁迫对草木樨叶中叶绿素含量和几种光合特性的影响[J]. 四川农业大学学报, 2005, 23(4):432-435 [15] 张红萍. 铅对植物的毒害及植物对铅的抗性机制[J]. 农业装备技术, 2007, 33(3):19-20 [16] 胡仲义, 李修鹏. 铅胁迫对全缘冬青幼苗生长与生理的影响[J]. 浙江林业科技, 2008, 28(1):19-22 [17] XIONG Z T, ZHAO F, LI M J. Lead toxicity in Brassica pekinensis Rupr.:Effect on nitrate assimilation and growth[J]. Environmental Toxicology, 2006, 21(2):147-153 [18] 叶春和. 紫花苜蓿对铅污染土壤修复能力及其机理的研究[J]. 土壤与环境, 2002, (4):331-334 [19] 白彦真, 谢英荷, 陈灿灿, 等. 铅对14种本土草本植物根系生长及根系活力的影响[J]. 灌溉排水学报, 2012, 31(3):75-77 [20] 史沉鱼, 阳月, 陈月萍, 等. 外源油菜素内酯对铅胁迫下花生幼苗的缓解效应[J]. 山西农业科学, 2024, 52(4):58-67 [21] KVPPER H, KVPPER F, SPILLER M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants[J]. Journal of Experimental Botany, 1996, 47(2):259-266 [22] HUANG H, GUPTA D K, TIAN S, et al.Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii[J]. Environmental Science and Pollution Research, 2012, 19:1640-1651 [23] SHARMA S S, DIETZ K J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress[J]. Journal of experimental botany, 2006, 57(4):711-726 [24] 张芳, 方溪, 张丽静. 草类对重金属胁迫的生理生化响应机制[J]. 草业科学, 2012, 29(4):534-541 [25] 熊俊, 袁喜, 王飞, 等. 重金属Pb对香根草、麦冬生理生化特性的影响[J]. 三峡环境与生态, 2010, 32 (6):9-12 [26] 何冰. 东南景天对铅的耐性和富集特性及其对铅污染土壤修复效应的研究[D]. 杭州:浙江大学, 2003:12 [27] GUPTA D K, HUANG H G, CORPAS F J. Lead tolerance in plants:strategies for phytoremediation[J]. Environmental Science and Pollution Research, 2013, 20:2150-2161 [28] HE J, MA C, MA Y, et al.Cadmium tolerance in six poplar species[J]. Environmental Science and Pollution Research, 2013, 20(1):163-174 [29] GHOURI F, SARWAR S, SUN L, et al..Silicon and iron nanoparticles protect rice against lead (Pb) stress by improving oxidative tolerance and minimizing Pb uptake[J]. Scientific Reports, 2024, 14(1):5986 [30] REDDY A M, KUMAR S G, JYOTHSNAKUMARI G, et al. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.)[J].Chemosphere, 2005, 60(1):97-104 [31] 李嘉欣, 李鸿燕, 刘丽娥, 等. 植物在铅胁迫下的耐受机制[J]. 分子植物育种, 1-11 [32] 徐术菁, 类淑营, 周霞, 等. Pb胁迫对东北蒲公英生长及生理的影响[J]. 北方园艺, 2022, (13):70-78 [33] 曾勇, 刘慧敏. 黄酮类化合物介导的植物耐逆性分析[J]. 分子植物育种, 1-12 [34] MALEVA M, GARMASH E, CHUKINA N, et al.Effect of the exogenous anthocyanin extract on key metabolic pathways and antioxidant status of Brazilian elodea (Egeria densa (Planch.) Casp.) exposed to cadmium and manganese[J]. Ecotoxicology and Environmental Safety, 2018, 160:197-206 [35] 王弛, 刘慧, 刘芳, 等. 基于代谢组学探究金线莲对铅胁迫的响应机制[J]. 南方农业学报, 2022, 53(12):3478-3488 [36] DO PRADO N B, DE ABREU C B, PINHO C S, et al. Application of multivariate analysis to assess stress by Cd, Pb and Al in basil (Ocimum basilicum L.) using caffeic acid, rosmarinic acid, total phenolics, total flavonoids and total dry mass in response[J]. Food Chemistry, 2022, 367:130682 [37] 杨远祥, 邹开贵, 朱雪梅, 等. 铅锌胁迫对铅超富集植物小鳞苔草生理代谢特性的影响[J]. 陕西农业科学, 2009, 55(06):83-85+95 [38] 谌金吾. 三叶鬼针草(Bidens pilosa L.)对重金属Cd、Pb胁迫的响应与修复潜能研究[D]. 重庆:西南大学, 2013:137-138 [39] 蔡建秀, 王慧云, 王春风. 铅胁迫对桐花树幼苗根叶蛋白质及根抗氧化酶活性的影响[J]. 安徽农业科学, 2010, 38(6):2903-2905, 2926 [40] 付靖宜. 外源有机酸对假俭草铅吸收积累的影响及其铅胁迫缓解机制[D]. 雅安:四川农业大学, 2022:29 [41] 王马勃, 巢建国, 谷巍, 等.铅胁迫下茅苍术生理指标、光合参数及生物量的变化[J]. 南方农业学报, 2019, 50(1):32-39 [42] 刘圆, 王雪莹, 高天鹏, 等. 3种藜科植物对复合重金属污染的生理响应[J]. 环境科学与技术, 2021, 44(8):55-63 [43] 乌拉. 草本植物对铅的耐性和富集特征研究[D]. 北京:北京林业大学, 2017:7-9 [44] UZU G, SOBANSKA S, ALIOUANE Y, et al.Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation[J]. environmental pollution, 2009, 157(4):1178-1185 [45] TOMAŠEVIĆ M, VUKMIROVIĆ Z, RAJŠIĆ S, et al.Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area[J]. Chemosphere, 2005, 61(6):753-760 [46] HUANG J W, CHEN J, BERTI W R, et al.Phytoremediadon of lead-contaminated soils:role of synthetic chelates in lead phytoextraction[J]. Environmental Science and Technology, 1997, 31(3):800-805 [47] WÓJCIK M, VANGRONSVELD J, TUKIENDORF A. Cadmium tolerance in Thlaspi caerulescens I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium[J]. Environmental and Experimental Botany, 2005, 53(2):151-161 [48] 刘秀梅, 聂俊华, 王庆仁. 6种植物对Pb的吸收与耐性研究[J]. 植物生态学报, 2002, 26(5):533-537 [49] KOPITTKE P M, ASHER C J, KOPITTKE R A, et al.Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata)[J]. Environmental Pollution, 2007, 150(2):280-287 [50] WANG H, SHAN X, WEN B, et al.Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response[J]. Environmental and Experimental Botany, 2007, 61(3):246-253 [51] MEYERS D E R, AUCHTERLONIE G J, WEBB R I, et al.Uptake and localisation of lead in the root system of Brassica juncea[J]. Environmental Pollution, 2008, 153(2):323-332 [52] KRZESŁOWSKA M, LENARTOWSKA M, SAMARDAKIEWICZ S, et al.Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable-a remobilization can occur[J]. Environmental Pollution, 2010, 158(1):325-338 [53] ARAZI T, SUNKAR R, KAPLAN B, et al.A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants[J]. The Plant Journal, 1999, 20(2):171-182 [54] WOJAS S, RUSZCZY? SKA A, BULSKA E, et al.Ca2+-dependent plant response to Pb2+ is regulated by LCT1[J]. Environmental Pollution, 2007, 147(3):584-592 [55] SAHI S V, BRYANT N L, SHARMA N C, et al.Characterization of a lead hyperaccumulator shrub, Sesbania drummondii[J]. Environmental Science & Technology, 2002, 36(21):4676-4680 [56] 杨肖娥, 龙新宪, 倪吾钟, 等. 东南景天(Sedum alfredii H)——一种新的锌超积累植物[J]. 科学通报, 2002, 47(13):1003-1006 [57] 黄金龙. 铅锌胁迫下普陀山苔草(Carex putuoshanensis sp.)的富集特性及生理代谢研究[D]. 成都:四川农业大学, 2014:2-6 [58] BAKER A J M. Metal tolerance[J]. New Phytologist, 1987, 106:93-111 [59] 杨刚, 伍钧, 唐亚. 铅胁迫下植物抗性机制的研究进展[J]. 生态学杂志, 2005, (12):1507-1512 [60] 熊俊, 袁喜, 王飞, 等. 重金属Pb对香根草、麦冬生理生化特性的影响[J]. 三峡环境与生态, 2010, 32 (6):9-12 [61] 曾祥玲, 曹成有, 高菲菲, 等. 镉、铅对沙打旺种子萌发及早期生长发育的毒性效应[J]. 草业学报, 2008, (4):71-77 [62] 陈英旭, 陈新才, 于明革. 土壤重金属的植物污染化学研究进展[J]. 环境污染与防治, 2009, 31(12):42-47 [63] 段德超, 于明革, 施积炎. 植物对铅的吸收、转运、累积和解毒机制研究进展[J]. 应用生态学报, 2014, 25 (1):287-296 [64] YADAV S K. Heavy metals toxicity in plants:an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants[J]. South African Journal of Botany, 2010, 76(2):167-179 [65] TIAN S, LU L, YANG X, et al.Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation[J]. Environmental Science & Technology, 2010, 44(15):5920-5926 [66] GUPTA D K, HUANG H G, YANG X E, et al.The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione[J]. Journal of Hazardous Materials, 2010, 177(1-3):437-444 [67] 安志装, 王校常, 严蔚东, 等. 植物螯合肽及其在重金属胁迫下的适应机制[J]. 植物生理学通讯, 2001, (5):463-467 [68] GUPTA M, RAI U N, TRIPATHI R D, et al.Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (l.f.) Royle[J]. Chemosphere, 1995, 30(10):2011-2020 [69] 仲灿, 葛晓敏, 倪云, 等. 植物对土壤Cd、Pb污染的修复与抗性机理研究进展[J]. 世界林业研究, 2017, 30(1):37-43 [70] 李海峰,王瑞华,韩琛.农药胁迫对植物抗氧化系统的研究现状[J].农产品加工,2018(3):59-62 [71] 刘云朝. 外源褪黑素对铅胁迫下狗牙根生长及抗氧化性的影响[J]. 中国草地学报, 2024, 46(1):97-107 [72] NI J, WANG Q, SHAH F A, et al.Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings[J]. Molecules, 2018, 23(4):799 [73] 沈文飚, 徐朗莱, 叶茂炳. 外源抗坏血酸和过氧化氢对小麦离体叶片衰老的调节[J]. 植物生理学通讯, 1997, 33(5):338-340 [74] Marschner’s mineral nutrition of higher plants[M]. Academic press, 2011 [75] 傅晓萍,豆长明,胡少平,等.有机酸在植物对重金属耐性和解毒机制中的作用[J].植物生态学报,2010,34(1):1354-1358 [76] BADRI D V, VIVANCO J M. Regulation and function of root exudates[J]. Plant, Cell & Environment, 2009, 32(6):666-681 [77] TATÁR E, MIHUCZ V G, VARGA A, et al.Determination of organic acids in xylem sap of cucumber:effect of lead contamination[J]. Microchemical Journal, 1998, 58(3):306-314 [78] 何冰, 叶海波, 杨肖娥. 铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较[J]. 农业环境科学学报, 2003, 22(3):274-278 [79] LIU C, LIN H, LI B, et al.Endophyte Pseudomonas putida enhanced Trifolium repens L. Growth and heavy metal uptake:A promising in-situ non-soil cover phytoremediation method of nonferrous metallic tailing[J]. Chemosphere, 2021, 272:129816 [80] 杨喜爱, 肖爱平, 冷鹃, 等. 植物重金属抗性内生细菌作用机制研究进展[J]. 安徽农学通报, 2013, 19(19):31-32, 46 [81] 张娜. 豆科牧草对重金属元素转运富集特性的研究[D]. 杨凌:西北农林科技大学, 2012:3 [82] STEFANOWICZ A M, STANEK M, WOCH M W. High concentrations of heavy metals in beech forest understory plants growing on waste heaps left by Zn-Pb ore mining[J]. Journal of Geochemical Exploration, 2016, 169:157-162 [83] XUE L, LIU J, SHI S, et al.Uptake of heavy metals by native herbaceous plants in an antimony mine (Hunan, China)[J]. CLEAN-Soil, Air, Water, 2014, 42(1):81-87 [84] 袁鑫奇, 俞乃琪, 郭兆来, 等. 会泽铅锌矿区废弃地优势草本植物的重金属富集特征[J]. 生态与农村环境学报, 2022, 38(3):399-408 [85] 段亚萍, 赵冰, 付丽童, 等. 铅、锌污染下蜀葵的生长生理响应和富集转运特性研究[J]. 草地学报, 2022, 30(2):418-425 [86] 郭晓宏, 朱广龙, 魏学智. 5种草本植物对土壤重金属铅的吸收、富集及转运[J]. 水土保持研究, 2016, 23 (1):183-186 [87] 朱燕华. 草坪植物对铅的耐性及富集特性研究[D]. 扬州:扬州大学, 2007:15-21 [88] STEFANOWICZ A M, STANEK M, WOCH M W, et al.The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining[J]. Environmental Science and Pollution Research, 2016, 23(7):6524-6534 [89] WIDYASARIN L, RAI I N, DHARMA I G B, et al.Study of controlling the content of Pb, Cu, Cd, and Cr in soils using hyperaccumulator plants[J]. Journal of Degraded and Mining Lands Management, 2024, 11(2):2-3 [90] 罗兴明, 聂刚, 刘秋旭, 等. 73份多花黑麦草种质资源萌发期耐铅性综合评价[J]. 草地学报, 2023, 31(08):2377-2386 [91] 王新, 贾永锋. 紫花苜蓿对土壤重金属富集及污染修复的潜力[J]. 土壤通报, 2009, 40(4):932-935 [92] 杨姝, 贾乐, 毕玉芬, 等. 7种紫花苜蓿对云南某Pb锌矿区土壤镉Pb的累积特征及品种差异[J]. 农业资源与环境学报, 2018, 35(3):222-228 [93] 谢开云, 何峰, 李向林, 等. 我国紫花苜蓿主产田土壤养分和植物养分调查分析[J]. 草业学报, 2016, 25(3)202-214 [94] 王恺, 刘一明, 王兆龙. 假俭草和海滨雀稗对土壤铅污染胁迫的生理反应[J]. 草业科学, 2010, 27(2):32-38 [95] 宣斌, 江红艳. 14种草本植物的耐铅性和积累特性[J]. 中南农业科技, 2024, 45(7):85-90 [96] 李亚亮, 张雨, 陶晓, 等. 重金属铅对三种菊科植物种子萌发及幼苗生长的影响[J]. 北方园艺, 2024, (4):49-56 [97] KHAN M I R, CHOPRA P, CHHILLAR H, et al.Regulatory hubs and strategies for improving heavy metal tolerance in plants:chemical messengers, omics and genetic engineering[J]. Plant Physiology and Biochemistry, 2021, 164:260-278 [98] TANG L, MAO B, LI Y, et al.Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1):14438 [99] 黄新元, 赵方杰. 植物防御素调控水稻镉积累的新机制[J]. 植物学报, 2018, 53 (4):451-455 |