草地学报 ›› 2024, Vol. 32 ›› Issue (1): 13-24.DOI: 10.11733/j.issn.1007-0435.2024.01.002
宋雪, 付楚涵, 李家红, 孙雪铜, 韦银珠, 肖汇川, 李韦瑶, 秦立刚
收稿日期:
2023-05-17
修回日期:
2023-09-15
出版日期:
2024-01-15
发布日期:
2024-01-30
通讯作者:
秦立刚,E-mail:qinligang@neau.edu.cn
作者简介:
宋雪(2000-),女,满族,辽宁本溪人,硕士研究生,主要从事草地植物资源利用研究,E-mail:songxue2023@163.com
基金资助:
SONG Xue, FU Chu-han, LI Jia-hong, SUN Xue-tong, WEI Yin-zhu, XIAO Hui-chuan, LI Wei-yao, QIN Li-gang
Received:
2023-05-17
Revised:
2023-09-15
Online:
2024-01-15
Published:
2024-01-30
摘要: 植物-内生菌共生体在缓解植物的非生物和生物胁迫方面发挥着重要作用。在干旱和盐胁迫下,内生菌可以通过调控植物光合作用、激素浓度、渗透调节物质含量、抗氧化酶活性以及相关基因表达等来保证植物正常生长和发育,从而增强植物抗逆性。近年来,植物促生菌(Plant growth promoting bacteria,PGPB)接种剂也被广泛研究应用。本文综述了植物内生菌的多样性、共生内生菌和PGPB在干旱和盐胁迫下对植物基因的调控,为内生菌提高植物耐旱性和耐盐性的分子机制的深入研究提供参考。
中图分类号:
宋雪, 付楚涵, 李家红, 孙雪铜, 韦银珠, 肖汇川, 李韦瑶, 秦立刚. 内生菌提高植物抗旱性和耐盐性分子机制研究进展[J]. 草地学报, 2024, 32(1): 13-24.
SONG Xue, FU Chu-han, LI Jia-hong, SUN Xue-tong, WEI Yin-zhu, XIAO Hui-chuan, LI Wei-yao, QIN Li-gang. Research Progress on Molecular Mechanism of Endophytes Improving the Drought Resistance and Salt Tolerance of Plant[J]. Acta Agrestia Sinica, 2024, 32(1): 13-24.
[1] PETRINI O. Fungal endophytes of tree leaves[C]//ANDREWS J H, HIRANO S S. Microbial Ecology of Leaves.New York:Springer-Verlag New York Inc., 1991:179-197 [2] BARMAN D, BHATTACHARJEE K. Endophytic bacteria associated with medicinal plants:The treasure trove of antimicrobial compounds[C]//EGAMBERDIEVA D, TIEZZI A. Medically Important Plant Biomes:Source of Secondary Metabolites. Singapore:Springer Singapore, 2019:153-187 [3] CHEN G, ZHANG X Y, ZHAO T. Endophytes of terrestrial plants:A potential source of bioactive secondary metabolites[J]. Journal of Food and Nutrition Research, 2020, 8(7):362-377 [4] STROBEL G A. Endophytes as sources of bioactive products[J]. Microbes and Infection, 2003, 5(6):535-544 [5] OUKALA N, AISSAT K, PASTOR V. Bacterial endophytes:The hidden actor in plant immune responses against biotic stress[J]. Plants-Basel, 2021, 10(5):1012 [6] HEWITT K G, POPAY A J, HOFMANN R W, et al. Epichloё a lifeline for temperate grasses under combined drought and insect pressure[J]. Grass Research, 2021, 1(1):1-12 [7] LANGRIDGE P, REYNOLDS M. Breeding for drought and heat tolerance in wheat[J]. Theoretical and Applied Genetics, 2021, 134:1753-1769 [8] DE VRIES F T, GRIFFITHS R I, KNIGHT C G, et al. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science, 2020, 368(6488):270-274 [9] OLDROYD G E D, DOWNIE J A. Coordinating nodule morphogenesis with rhizobial infection in legumes[J]. Annual Review of Plant Biology, 2008, 59:519-546 [10] PAPIK J, FOLKMANOVA M, POLIVKOVA-MAJOROVA M M, et al. The invisible life inside plants:Deciphering the riddles of endophytic bacterial diversity[J]. Biotechnology Advances, 2020, 44:107614 [11] DINI-ADREOTE F. Endophytes:The second layer of plant defense[J]. Trends in Plant Science, 2020, 25(4):319-322 [12] MOGHADDAM M S H, SAFAIE N, SOLTANI J, et al. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops[J]. Plant Physiology and Biochemistry, 2021, 160:225-238 [13] MORSY M, CLECKLER B, ARMUELLES-MILICAN H. Fungal endophytes promote tomato growth and enhance drought and salt tolerance[J]. Plants-Basel, 2020, 9(7):877 [14] 金忠民, 李春月, 刘本松, 等. 菌株JB12影响铅镉胁迫下菊苣黄酮合成的转录组分析[J]. 草地学报, 2023, 31(6):1648-1655 [15] KANG P, FANG X, HU J, et al. Branch lignification of the desert plant Nitraria tangutorum altered the structure and function of endophytic microorganisms[J]. Agronomy, 2022, 13(1):90 [16] BATSTONE R T, O'BRIEN A M, HARRISON T L, et al. Experimental evolution makes microbes more cooperative with their local host genotype[J]. Science, 2020, 370(6515):476-478 [17] MANIAS D, VERMA A, SONI D K. Microbial Endophytes[M]. United Kingdom:Woodhead Publishing, 2020:1-14 [18] ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2):313-324 [19] ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1):247-273 [20] AMOAH J N, KO C S, YOON J S, et al. Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.)[J]. Journal of Plant Interactions, 2019, 14(1):492-505 [21] OLESKA E, MALEK W, WOJCIK M, et al. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions:A methodical review[J]. Science of the Total Environment, 2020, 743:140682 [22] GLICK B R. Plant growth-promoting bacteria:mechanisms and applications[J]. Scientifica, 2012, 2012(5):963401 [23] CABOT C, SIBOLE J V, BARCELO J, et al. Lessons from crop plants struggling with salinity[J]. Plant Science, 2014, 226:2-13 [24] ARAUJO W L, MACCHEROI JR W, AGUILAR-VILDOSO C I, et al. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks[J]. Canadian Journal of Microbiology, 2001, 47(3):229-236 [25] VISHWAKARMA K, KUMAR N, SHANDILYA C, et al. Unravelling the role of endophytes in micronutrient uptake and enhanced crop productivity[J]. Symbiotic Soil Microorganisms:Biology and Applications, 2021, 60:63-85 [26] BARRERA M C, JAKOBS-SCHOENWANDT D, GOMEZ M I, et al. Formulating bacterial endophyte:Pre-conditioning of cells and the encapsulation in amidated pectin beads[J]. Biotechnology Reports, 2020, 26:e00463 [27] RANA K L, KOUR D, KAUR T, et al. Endophytic microbes:biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability[J]. Antonie Van Leeuwenhoek, 2020, 113:1075-1107 [28] RANA K L, KOUR D, KAUR T, et al. Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake[J]. Proceedings of the National Academy of Sciences, India Section B:Biological Sciences, 2020, 90:969-979 [29] KHALIL A M A, HASSAN S E D, ALSHARIF S M, et al. Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting[J]. Biomolecules, 2021, 11(2):140 [30] ZHANG J, ZHU Y, SI J, et al. Metabolites of medicine food homology-derived endophytic fungi and their activities[J]. Current Research in Food Science, 2022, 5:1882-1896 [31] ZHENG R Y, JIANG H. Rhizomucor endophyticus sp. nov., an endophytic zygomycetes from higher plants[J]. Mycotaxon, 1995, 56:455-466 [32] AHMED A M, MAHMOUD B K, MILLAN-AGUINAGA N, et al. The endophytic Fusarium strains:a treasure trove of natural products[J]. RSC Advances, 2023, 13(2):1339-1369 [33] MOISSL-EICHINGER C, PAUSAN M, TAFFNER J, et al. Archaea are interactive components of complex microbiomes[J]. Trends in Microbiology, 2018, 26(1):70-85 [34] DE LISE F, IACONO R, MORACCI M, et al. Archaea as a model system for molecular biology and biotechnology[J]. Biomolecules, 2023, 13(1):114 [35] BAKER B J, DE ANDA V, SEITZ K W, et al. Diversity, ecology and evolution of Archaea [J]. Nature Microbiology, 2020, 5(7):887-900 [36] EME L, SPAG A, LOMBARD J, et al. Archaea and the origin of eukaryotes[J]. Nature Reviews Microbiology, 2017, 15(12):711-723 [37] STRAUB C T, COUNTS J A, NGUYEN D M N, et al. Biotechnology of extremely thermophilic archaea[J]. FEMS Microbiology Reviews, 2018, 42(5):543-578 [38] CHEN F, QI Y, JIANG B, et al. Metalaxyl-resistant mutant strains of Phytophthora boehmeriae are as aggressive and fit as their metalaxyl-sensitive wild-type parents[J]. Tropical Plant Pathology, 2023:48, 128-138 [39] WANG T, GAO C, CHENG Y, et al. Molecular diagnostics and detection of oomycetes on fiber crops[J]. Plants-Basel, 2020, 9(6):769 [40] WANG C, HUANG R, WANG J, et al. Comprehensive analysis of transcriptome and metabolome elucidates the molecular regulatory mechanism of salt resistance in roots of Achnatherum inebrians mediated by Epichloё gansuensis[J]. Journal of Fungi, 2022, 8(10):1092 [41] QU D, WU F, ZHAO X, et al. A bZIP transcription factor VabZIP12 from blueberry induced by dark septate endocyte improving the salt tolerance of transgenic Arabidopsis[J]. Plant Science, 2022, 315:111135 [42] KUMARI V, VUJANOVIC V. Transgenerational benefits of endophytes on resilience and antioxidant genes expressions in pea (Pisum sativum L.) under osmotic stress[J]. Acta Physiologiae Plantarum, 2020, 42:1-11 [43] KASHYAP B K, ARA R, SINGH A, et al. Halotolerant PGPR bacteria:Amelioration for salinity stress[J]. Microbial Interventions in Agriculture and Environment, 2019, 28:509-530 [44] NIU S, GAO Y, ZI H, et al. The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism[J]. The Crop Journal, 2022, 10(2):375-386 [45] SAHU P K, SINGH S, SINGH U B, et al. Inter-genera colonization of Ocimum tenuiflorum endophytes in tomato and their complementary effects on Na+/K+ balance, oxidative stress regulation, and root architecture under elevated soil salinity[J]. Frontiers in Microbiology, 2021, 12:744733 [46] DIF G, BELAOUNI H A, YEKKOUR A, et al. Performance of halotolerant bacteria associated with Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L. ameliorate tomato plant growth and tolerance to saline stress:from selective isolation to genomic analysis of potential determinants[J]. World Journal of Microbiology and Biotechnology, 2022, 38(1):16 [47] WU T, LI X, XU J, et al. Diversity and functional characteristics of endophytic bacteria from two grass species growing on an oil-contaminated site in the Yellow River Delta, China[J]. Science of The Total Environment, 2021, 767:144340 [48] ANDRES-BARRAO C, ALZUBAIDY H, JALAL R, et al. Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187-induced plant salt stress tolerance[J]. Proceedings of the National Academy of Sciences, 2021, 118(46):e2107417118 [49] BADEPPA S, PAUL S, THAKUR J K, et al. Antioxidant, physiological and biochemical responses of drought susceptible and drought tolerant mustard (Brassica juncea L) genotypes to rhizobacterial inoculation under water deficit stress[J]. Plant Physiology and Biochemistry, 2019, 143:19-28 [50] AHMAD M, NASEER I, HUSSAIN A, et al. Appraising endophyte-plant symbiosis for improved growth, nodulation, nitrogen fixation and abiotic stress tolerance:An experimental investigation with chickpea (Cicer arietinum L.)[J]. Agronomy, 2019, 9(10):621 [51] TAULE C, VAZ-JAURI P, BATTISTONI F. Insights into the early stages of plant-endophytic bacteria interaction[J]. World Journal of Microbiology and Biotechnology, 2021, 37:1-9 [52] COMPAT S, CLEMET C, SESSITSCH A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology and Biochemistry, 2010, 42(5):669-678 [53] FRANK A C, SALDIERNA G J P, SHAY J E. Transmission of bacterial endophytes[J]. Microorganisms, 2017, 5(4):70 [54] NADEEM S M, AHMAD M, ZAHIR Z A, et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments[J]. Biotechnology advances, 2014, 32(2):429-448 [55] CHIELLINI C, DE LEO M, LONGO V, et al. Characterization of the endophytic bacterial community of Bituminaria bituminosa plant grown in vitro and its interaction with the plant extract[J]. Frontiers in Plant Science, 2022, 13:1076573 [56] TYC O, PUTRA R, GOLS R, et al. The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom[J]. Microbiology Open, 2020, 9(1):e00954 [57] SAMPAGI-RAMAIAH M H, DEY P, JAMAGI S, et al. An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host[J]. Scientific Reports, 2020, 10(1):1-14 [58] REN X, SHAN Y, LI X, et al. Application of RNA sequencing to understand the benefits of endophytes in the salt-alkaline resistance of rice seedlings[J]. Environmental and Experimental Botany, 2022, 196:104820 [59] NAGABHYRU P, DINKINS R D, SCHARDL C L. Transcriptomics of Epichloё-grass symbioses in host vegetative and reproductive stages[J]. Molecular Plant-Microbe Interactions, 2019, 32(2):194-207 [60] LEUCHTMANN A, BACON C W, SCHARDL C L, et al. Nomenclatural realignment of Neotyphodium species with genus Epichloё[J]. Mycologia, 2014, 106(2):202-215 [61] EGAMBERDIEVA D, ALIMOV J, SHURIGIN V, et al. Diversity and plant growth-promoting ability of endophytic, halotolerant bacteria associated with Tetragonia tetragonioides (Pall.) Kuntze[J]. Plants-Basel, 2021, 11(1):49 [62] ZHONG R, BASTIAS D A, ZHANG X, et al. Vertically transmitted Epichloё systemic endophyte enhances drought tolerance of Achnatherum inebrians host plants through promoting photosynthesis and biomass accumulation[J]. Journal of Fungi, 2022, 8(5):512 [63] ZHANG Y, LANG D, ZHANG W, et al. Bacillus cereus enhanced medicinal ingredient biosynthesis in Glycyrrhiza uralensis Fisch. under different conditions based on the transcriptome and polymerase chain reaction analysis[J]. Frontiers in Plant Science, 2022, 13:858000 [64] KHALID M, RAHMAN S, HUANG D. Molecular mechanism underlying Piriformospora indica-mediated plant improvement/protection for sustainable agriculture[J]. Acta Biochimica et Biophysica Sinica, 2019, 51(3):229-242 [65] YOUSEFIRAD S, SOLTANLOO H, RAMEZANPOUR S S, et al. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley[J]. Plos One, 2020, 15(3):e0229513 [66] SHI L N, LU L X, YE J R, et al. The endophytic strain ZS-3 enhances salt tolerance in Arabidopsis thaliana by regulating photosynthesis, osmotic stress, and ion homeostasis and inducing systemic tolerance[J]. Frontiers in Plant Science, 2022, 13:820837 [67] GOVINDASAMY V, GEORGE P, KUMAR M, et al. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench] [J]. 3 Biotech, 2020, 10(1):1-14 [68] YUE Z, CHEN Y, WANG Y, et al. Halotolerant Bacillus altitudinis WR10 improves salt tolerance in wheat via a multi-level mechanism[J]. Frontiers in Plant Science, 2022, 13:2502 [69] LI F, HE X, SUN Y, et al. Distinct endophytes are used by diverse plants for adaptation to karst regions[J]. Scientific Reports, 2019, 9(1):1-9 [70] WANG Z, ZHU Y, LI N, et al. High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of saline-alkali tolerant rice[J]. Microbiological Research, 2021, 250:126794 [71] DALE J C M, NEWMAN J A. A First Draft of the Core Fungal Microbiome of Schedonorus arundinaceus with and without Its Fungal Mutualist Epichloё coenophiala[J]. Journal of Fungi, 2022, 8(10):1026 [72] GEDDES-MCALISTER J, SUKUMARAN A, PATCHETT A, et al. Examining the impacts of CO2 concentration and genetic compatibility on perennial ryegrass-Epichloё festucae var lolii interactions[J]. Journal of Fungi, 2020, 6(4):360 [73] 熊海琳, 毛培春, 田小霞, 等. 接种根瘤菌对林下红三叶草产量与品质及土壤特性影响[J]. 草地学报, 2023, 31(11):3561-3568 [74] BRIGIDO C, SINGH S, MENENDEZ E, et al. Diversity and functionality of culturable endophytic bacterial communities in chickpea plants[J]. Plants-Basel, 2019, 8(2):42 [75] YANG B, WANG X M, MA H Y, et al. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere[J]. Frontiers in microbiology, 2015, 6:982 [76] ZHANG W, SUN K, SHI R H, et al. Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N2-fixation[J]. Plant Cell and Environment, 2018, 41(9):2093-2108 [77] LIN H, LIU C, PENG Z, et al. Distribution pattern of endophytic bacteria and fungi in tea plants[J]. Plant Microbiome:Diversity, Functions, and Applications, 2022, 13:872034 [78] CHEN D W, WANG Y H, SHI W J, et al. Analysis of endophyte diversity of Rheum palmatum among different tissues and ages[J]. Archives of Microbiology, 2023, 205(1):14 [79] HOU Q Z, CHEN D W, WANG Y, et al. Analysis of endophyte diversity of Gentiana officinalis among different tissue types and ages and their association with four medicinal secondary metabolites[J]. PeerJ, 2022, 10:e13949 [80] COMPANT S, REITER B, SESSITSCH A, et al. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN[J]. Applied and Environmental Microbiology, 2005, 71(4):1685-1693 [81] NELSON E B. The seed microbiome:origins, interactions, and impacts[J]. Plant and Soil, 2018, 422:7-34 [82] SULLIVAN T J, ROBERTS H, BULTMAN T L. Genetic Covariation Between the Vertically Transmitted Endophyte Epichloё canadensis and Its Host Canada Wildrye[J]. Microbial Ecology, 2023, 86(3):1686-1695 [83] SHADE A, JACQUES M A, BARRET M. Ecological patterns of seed microbiome diversity, transmission, and assembly[J]. Current Opinion in Microbiology, 2017, 37:15-22 [84] LI X, HE C, HE X, et al. Dark septate endophytes improve the growth of host and non-host plants under drought stress through altered root development[J]. Plant and Soil, 2019, 439:259-272 [85] HEREME R, MORALES-NAVARRO S, BALLESTEROS G, et al. Fungal endophytes exert positive effects on Colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica[J]. Frontiers in Microbiology, 2020, 11:264 [86] GUPTA A, TIWARI R, SHUKLA R, et al. Salinity alleviator bacteria in rice (Oryza sativa L.), their colonization efficacy, and synergism with melatonin[J]. Frontiers in Plant Science, 2022, 13:1060287 [87] GOVINDASAMY V, RAINA S K, GEORGE P, et al. Functional and phylogenetic diversity of cultivable rhizobacterial endophytes of sorghum[Sorghum bicolor (L.) Moench] [J]. Antonie van Leeuwenhoek, 2017, 110:925-943 [88] KAZEROONI E A, MAHARACHCHIKUMURA S S N, ADHIKARI A, et al. Rhizospheric Bacillus amyloliquefaciens protects Capsicum annuum cv. Geumsugangsan from multiple abiotic stresses via multifarious plant growth-promoting attributes[J]. Frontiers in Plant Science, 2021, 12:669693 [89] KHAN M A, ASAF S, KHAN A L, et al. Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants[J]. Plant Biology, 2020, 22(5):850-862 [90] DINKINS R D, NAGAHYRU P, YOUNG C A, et al. Transcriptome analysis and differential expression in tall fescue harboring different endophyte strains in response to water deficit[J]. The Plant Genome, 2019, 12(2):180071 [91] PANKE-BUISSE K, CHENG L, GAN H, et al. Root fungal endophytes and microbial extracellular enzyme activities show patterned responses in tall fescues under drought conditions[J]. Agronomy, 2020, 10(8):1076 [92] NAGABHYRU P, DINKINS R D, SCHARDL C L. Transcriptome analysis of Epichloё strains in tall fescue in response to drought stress[J]. Mycologia, 2022, 114(4):697-712 [93] WANG J, HOU W, CHRISTENSEN M J, et al. Role of Epichloё endophytes in improving host grass resistance ability and soil properties[J]. Journal of Agricultural and Food Chemistry, 2020, 68(26):6944-6955 [94] MORALES-QUINTANA L, BARRERA A, HEREME R, et al. Molecular and structural characterization of expansins modulated by fungal endophytes in the Antarctic Colobanthus quitensis (Kunth) Bartl. exposed to drought stress[J]. Plant Physiology and Biochemistry, 2021, 168:465-476 [95] YAGHOUBI K M, CRECCHIO C, VERBRUGGEN E. Shifts in the rhizosphere and endosphere colonizing bacterial communities under drought and salinity stress as affected by a biofertilizer consortium[J]. Microbial Ecology, 2022, 84(2):483-495 [96] MANJUNATHA B S, PAUL S, AGGARWAL C, et al. Diversity and tissue preference of osmotolerant bacterial endophytes associated with pearl millet genotypes having differential drought susceptibilities[J]. Microbial Ecology, 2019, 77(3):676-688 [97] JAYAKUMAR A, NAIR I C, RADHAKRISHNAN E K. Environmental adaptations of an extremely plant beneficial Bacillus subtilis Dcl1 identified through the genomic and metabolomic analysis[J]. Microbial Ecology, 2021, 81:687-702 [98] BARAWAL D, BHARTI N, PADEY S S, et al. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression[J]. Physiologia Plantarum, 2017, 161(4):502-514 [99] LASTOCHKINA O, IVANOV S, PETROVA S, et al. Role of Endogenous Salicylic Acid as a Hormonal Intermediate in the Bacterial Endophyte Bacillus subtilis-Induced Protection of Wheat Genotypes Contrasting in Drought Susceptibility under Dehydration[J]. Plants-Basel, 2022, 11(23):3365 [100] XIE Z, CHU Y, ZHANG W, et al. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch[J]. Environmental and Experimental Botany, 2019, 158:99-106 [101] SAMAIN E, ERNENWEIN C, AUSSEAC T, et al. Effective and durable systemic wheat-induced resistance by a plant-growth-promoting rhizobacteria consortium of Paenibacillus sp. strain B2 and Arthrobacter spp. strain AA against Zymoseptoria tritici and drought stress[J]. Physiological and Molecular Plant Pathology, 2022, 119:101830 [102] MANJUNATHA B S, NIVETHA N, KRISHNA G K, et al. Plant growth-promoting rhizobacteria Shewanella putrefaciens and Cronobacter dublinensis enhance drought tolerance of pearl millet by modulating hormones and stress-responsive genes[J]. Physiologia Plantarum, 2022, 174(2):e13676 [103] CHEN J, ZHANG H, ZHANG X, et al. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis[J]. Frontiers in Plant Science, 2017, 10(8):1739 [104] BAKHSHANDEH E, GHOLAMHOSSEINI M, YAGHOUBIAN Y, et al. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress[J]. Plant Growth Regulation, 2020, 90:123-136 [105] DONG Z Y, RAO M P N, WANG H F, et al. Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana[J]. Science of the Total Environment, 2019, 686:107-117 [106] MOLINA-MONTENEGRO M A, ACUNA R I S, TORRES D C, et al. Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration[J]. Scientific Reports, 2020, 10(1):1-10 [107] ZHENG Y, XU Z, LIU H, et al. Patterns in the microbial community of salt-tolerant plants and the functional genes associated with salt stress alleviation[J]. Microbiology Spectrum, 2021, 9(2):e0076721 [108] 张银翠, 姚拓, 赵桂琴, 等. 耐盐促生菌筛选鉴定及对盐胁迫燕麦生长的影响[J]. 草地学报, 2021, 29(12):2645-2652 [109] BARAWAL D, BHARTI N, MAJI D, et al. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation[J]. Plant Physiology and Biochemistry, 2012, 58:227-235 [110] WU F L, LI Y, TIAN W, et al. A novel dark septate fungal endophyte positively affected blueberry growth and changed the expression of plant genes involved in phytohormone and flavonoid biosynthesis[J]. Tree Physiology, 2020, 40(8):1080-1094 [111] LANZA M, HARO R, CONCHILLO L B, et al. The endophyte Serendipita indica reduces the sodium content of Arabidopsis plants exposed to salt stress:Fungal ENA ATPases are expressed and regulated at high pH and during plant co-cultivation in salinity[J]. Environmental Microbiology, 2019, 21(9):3364-3378 [112] XU W, WANG F, ZHANG M, et al. Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities[J]. Microbiological Research, 2019, 229:126328 |
[1] | 韩喆, 张永强, 张浩浩, 罗文浩, 陈爱萍. 干旱胁迫对伊犁绢蒿幼苗生长及叶片解剖结构的影响[J]. 草地学报, 2024, 32(1): 105-112. |
[2] | 武玲玲, 谢永丽, 杨杰, 杨雪, 李俊熹, 王添, 高英, 常斐斐. 萎缩芽孢杆菌WL520生物活性及干旱胁迫下促紫花苜蓿生长效应[J]. 草地学报, 2024, 32(1): 322-330. |
[3] | 唐芳, 梅亭, 高佳荷, 王佳妮, 石凤翎, 高翠萍. 紫花苜蓿GPAT基因家族鉴定及在盐碱胁迫下的表达模式分析[J]. 草地学报, 2023, 31(9): 2608-2620. |
[4] | 蒋宇佳, 于元平, 孙向一, 周敏, 吴春妍, 李玉华, 刘明稀. 假俭草R2R3-MYB基因家族的鉴定及其在干旱胁迫下的表达模式分析[J]. 草地学报, 2023, 31(9): 2628-2641. |
[5] | 冯树林, 周婷, 王军利. 胡枝子幼苗不同生长阶段叶水势对干旱-复水的响应特征[J]. 草地学报, 2023, 31(7): 2077-2085. |
[6] | 于思敏, 罗永忠, 康芳明, 邱应德, 李转桃. 干旱胁迫对紫花苜蓿生长和叶绿素荧光特性的影响[J]. 草地学报, 2023, 31(6): 1762-1771. |
[7] | 朱琨, 方志坚, 李帅, 王巍, 李波. 冻融及盐碱双重胁迫对苜蓿幼苗营养器官矿质离子吸收及运输的影响[J]. 草地学报, 2023, 31(6): 1818-1825. |
[8] | 岑慧芳, 钱文武, 朱慧森, 夏方山, 杜利霞, 许涛. 干旱胁迫对草地早熟禾叶片显微结构和光合特征的影响[J]. 草地学报, 2023, 31(5): 1368-1377. |
[9] | 黄荣雁, 孟维珊, 朱琨, 刘殿辉, 赵竹婷, 路程伟, 孙正轩, 唐宽宇, 周佳奇, 程瑜. 细叶小檗生理、光合特性及叶表微形态对干旱胁迫的响应[J]. 草地学报, 2023, 31(5): 1386-1392. |
[10] | 任明辉, 张雨蓬, 许涛, 朱慧森, 岑慧芳. 紫花苜蓿R2R3-MYB亚家族鉴定与干旱胁迫下的表达分析[J]. 草地学报, 2023, 31(4): 972-983. |
[11] | 吴学蕤, 赵庆霞, 蔡银美, 张成富, 李官亮. 干旱-复水对构树叶片水势和气孔开闭的影响[J]. 草地学报, 2023, 31(3): 769-776. |
[12] | 师微柠, 苏世平, 李毅, 张䶮, 席杰. 干旱生境下外源脯氨酸对红砂气孔形态的影响[J]. 草地学报, 2023, 31(3): 777-784. |
[13] | 马小兰, 周华坤, 张正芳, 李珍珍, 徐梦真, 黄奥伟, 王文颖, 殷恒霞. 外源IAA对干旱胁迫下红豆草种子萌发及幼苗生长的影响[J]. 草地学报, 2023, 31(3): 796-803. |
[14] | 李亚莉, 马瑞, 马彦军, 李海津. 盐旱胁迫对盐爪爪种子萌发及幼苗生长的影响[J]. 草地学报, 2023, 31(12): 3715-3723. |
[15] | 赵小娜, 高志昊, 王斌, 张译尹, 胡海英, 兰剑. 15份饲用型燕麦种质材料苗期抗旱性比较与评价[J]. 草地学报, 2023, 31(12): 3734-3743. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||