[1] GASCH C K,TOLEDO D,KRAL-O'BRIEN K,et al. Kentucky bluegrass invaded rangeland:Ecosystem implications and adaptive management approaches[J]. Rangelands,2020,42(4):106-116 [2] ZHANG X,GOATLEY M,WU W,et al. Drought-induced injury is associated with hormonal alteration in Kentucky bluegrass[J]. Plant Signaling and Behavior,2019,14(10):1-7 [3] HUANG J,YU H,GUAN X,et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change,2015,2(6):166-171 [4] 张然,马祥,朱瑞婷,等. 青海野生草地早熟禾响应干旱胁迫的代谢通路及转录调控分析[J]. 草地学报,2020,28(6):1508-1518 [5] QIAN Y,FRY J D. Water relations and drought tolerance of four turfgrasses[J]. Journal of the American Society for Horticultural Science,1997,122(1):129-133 [6] 曹生奎,冯起,司建华,等. 植物叶片水分利用效率研究综述[J]. 生态学报,2009,29(7):3882-3892 [7] 吕静. 四种暖季型草坪草的抗旱性研究[D]. 长沙:中南林业科技大学,2010:47-52 [8] 王爱英,李双,焦浈,等. PEG-6000模拟干旱对不同抗性小麦品种光合和叶绿素荧光特性的影响[J]. 甘肃农业大学学报,2022,57(4):49-56 [9] TERASHIMA I,HANBA Y T,NIINEMETS D T. Leaf functional anatomy in relation to photosynthesis[J]. Plant Physiology,2011,155(1):108-116 [10] 李周,赵雅洁,宋海燕,等. 不同水分处理下喀斯特土层厚度异质性对两种草本叶片解剖结构和光合特性的影响[J]. 生态学报,2018,38(2):721-732 [11] 郝晨淞,王庆凯,孙小玲. 异质性光对野牛草叶片解剖结构的影响[J]. 植物生态学报,2016,40(3):246-254 [12] 苗芳,冯佰俐,周春菊,等. 冷型小麦叶片显微结构的一些特征[J]. 作物学报,2003,29(1):155-156 [13] 高钿惠,尚佳州,宋立婷,等. 小叶杨叶片光合特性与解剖结构对干旱及复水的响应[J]. 中国水土保持科学,2021,19(6):18-26 [14] 程玲,邱永福,叶东明,等. 多年生黑麦草的叶片结构分析[J]. 长江大学学报,2010,7(3):23-26 [15] 王雨,刘潘莲,曹翠兰,等. 陕西14种小檗属植物的叶表皮微形态[J]. 草业科学,2020,37(3):451-458 [16] 陈阳,金一锋,孙华山,等. 草地早熟禾的石蜡切片制作技术的优化[J]. 草地学报,2017,25(6):1376-1379 [17] 南思睿,罗永忠,于思敏,等. 干旱胁迫后复水对新疆大叶苜蓿幼苗光合和叶绿素荧光的影响[J]. 草地学报,2022,30(5):1141-1149 [18] 马亚丽,王璐,刘艳霞,等. 荒漠植物几种主要附属结构的抗逆功能及其协同调控的研究进展[J]. 植物生理学报,2015,51(11):1821-1836 [19] 赵瑞霞,张齐宝,吴秀英,等. 干旱对小麦叶片下表皮细胞、气孔密度及大小的影响[J]. 内蒙古农业科技,2001(6):6-7 [20] 厉广辉,张昆,刘风珍,等. 不同抗旱性花生品种的叶片形态及生理特性[J]. 中国农业科学,2014,47(4):644-654 [21] BUCKLEY T N,JOHN G P,SCOFFONI C,et al. How does leaf anatomy influence water transport outside the xylem?[J] Plant Physiology,2015,168(4):1616-1635 [22] 黄振英,吴鸿,胡正海. 30种新疆沙生植物的结构及其对沙漠环境的适应[J]. 植物生态学报,1997,21(6):34-43 [23] SACK L,SCOFFONI C,JOHN G P,et al. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis[J]. Journal of Experimental Botany,2013,64(13):4053-4080 [24] 李中华,刘进平,谷海磊,等. 干旱胁迫对植物气孔特性影响研究进展[J]. 亚热带植物科学,2016,45(2):195-200 [25] XU Z Z,ZHOU G S. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of Experimental Botany,2008,59(12):3317-3325 [26] FRASER L H,GREENALL A,CARLYLE C,et al. Adaptive phenotypic plasticity of Pseudoroegneria spicata:response of stomatal density,leaf area and biomass to changes in water supply and increased temperature[J]. Annals of Botany,2009,103(5):769-775 [27] MAKBUL S,GVLER N S,DURMUS N,et al. Changes in anatomical and physiological parameters of soybean under drought stress[J]. Turkish Journal of Botany,2011,35(4):369-377 [28] ANTONIELLI M,PASQUALINI S,BATINI P,et al. Physiological and anatomical characterisation of Phragmites australis leaves[J]. Aquatic Botany,2002,72(1):55-66 [29] 王碧霞,曾永海,王大勇,等. 叶片气孔分布及生理特征对环境胁迫的响应[J]. 干旱地区农业研究,2010,28(2):122-126 [30] 高冠龙,冯起,张小由,等. 植物叶片光合作用的气孔与非气孔限制研究综述[J]. 干旱区研究,2018,35(4):929-937 [31] 秦格霞,吴静,李纯斌,等. 不同草地类型WOFOST模型参数敏感性分析[J]. 草业学报,2022,31(5):13-25 [32] ARAUS J L,ALEGRE L,TAPIA L,et al. Relationships between photosynthetic capacity and leaf structure in several shade plants[J]. American Journal of Botany,1986,73(12):1760-1770 [33] 赵雪,张秀珍,牟洪香,等. 文冠果幼苗叶片解剖结构和光合作用对干旱胁迫的响应[J]. 北方园艺,2017(13):38-44 [34] 秦茜,朱俊杰,关心怡,等. 七个甘蔗品种叶片解剖结构特征与光合能力和耐旱性的关联[J]. 植物生理学报,2017,53(4):705-712 [35] 张咏梅,白小明,田彦锋,等. 4种观赏草叶片解剖结构的观察及其对环境的适应性分析[J]. 草地学报,2019,27(5):1377-1383 [36] 龚月桦,高俊凤. 高等植物光合同化物的运输与分配[J]. 西北植物学报,1999,19(3):564-570 [37] 张东,刘艳,张晗,等. 甘草叶片形态结构和光合作用对干旱胁迫的响应[J]. 植物研究,2021,41(3):449-457 |