草地学报 ›› 2024, Vol. 32 ›› Issue (12): 3877-3887.DOI: 10.11733/j.issn.1007-0435.2024.12.023

• 研究论文 • 上一篇    

高寒地区典型植物群落地表反照率特征分析

陈亚玲1, 乔占明2, 史惠兰1   

  1. 1. 青海大学生态环境工程学院, 青海 西宁 810016;
    2. 青海省自然资源综合调查监测院, 青海 西宁 810000
  • 收稿日期:2024-03-12 修回日期:2024-06-27 发布日期:2024-12-14
  • 通讯作者: 史惠兰,E-mail:hlshi7701@126.com
  • 作者简介:陈亚玲(1999-),女,汉族,四川宜宾人,硕士研究生,主要从事可持续生态学研究,E-mail:chenyaling2021@163.com;
  • 基金资助:
    青海省科技厅重点研发与转化科技援青合作专项项目“基于植被时谱特征的高寒草地遥感生态预警体系构建”;青海省2023年度“昆仑英才·高层次教育教学人才”(青人才字[2023]10号);2023年省级“四新”研究与改革实践项目(2023-SJSX-04);生态学世界一流学科研究生科技创新项目(2024-stxy-Y30)资助

Surface Albedo Characteristics of Typical Plant Communities Based on Latent Profile Analysis in Alpine Region

CHEN Ya-ling1, QIAO Zhan-ming2, SHI Hui-lan1   

  1. 1. College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai Province 810016, China;
    2. Qinghai Provincial Natural Resources Survey and Monitoring Institute, Xining, Qinghai Province 810000, China
  • Received:2024-03-12 Revised:2024-06-27 Published:2024-12-14

摘要: 采集2000—2020年的青海省黄南藏族自治州河南蒙古族自治县植物群落数据和地表反照率数据,基于植物群落分类法对金露梅(Potentilla fruticosa,PF)、垂穗披碱草(Elymus nutans,EN)、矮嵩草(Kobresia humilis,KH)、小嵩草(Kobresia pygaea,KP)、藏嵩草(Kobresia tibetica,KT)等典型植物群落进行群落特征调查,对典型植物群落的地表反照率进行提取分析,并构建潜类别模型对不同植物地表反照率进行分类。结果表明:高寒地区时间空间尺度下地表反照率差异显著(P<0.05),近21年不同植物群落的地表反照率整体呈缓慢降低的波动趋势,灌丛和草甸群落在地表反照率的不同波段均为显著(P<0.05),在近红外光反照率中金露梅灌丛与其他植物群落显著不同,可将其作为不同类型草地遥感分类的依据。潜剖面模型结合植物群落地表反照率特征将植物群落分为“低反照率”“高反照率”“中低反照率”和“中高反照率”4种类别。

关键词: 地表反照率, 高寒地区, 植物群落, 潜剖面分析

Abstract: From 2000 to 2020, data on alpine plant community characteristics and surface albedo were collected in Henan Mongolian Autonomous County, Huangnan Tibetan Autonomous Prefecture, Qinghai Province. The study focused on typical plant communities, including Potentilla fruticosa (PF), Elymus nutans (EN), Kobresia humilis (KH), Kobresia pygaea (KP), and Kobresia tibetica (KT). These communities were investigated using a classification method based on community characteristics and remote sensing technology. Surface albedo characteristics of these plant communities were extracted and analyzed, and a Latent Class Analysis (LCA) model was constructed to classify surface albedo across different plant communities. The results revealed significant spatial and temporal differences in surface albedo within the alpine region (P<0.05). Over the past 21 years, surface albedo across these plant communities showed a slow decreasing trend. Scrub and meadow communities exhibited notable differences in various surface albedo bands, with P. fruticosa shrublands showing significant variation in near-infrared albedo compared to other plant communities. This difference can serve as a basis for remote sensing classification of different grassland types. Using the LCA model, the integration of surface albedo data and plant community characteristics allowed for the classification of plant communities into four distinct categories:“Medium-low albedo” “Medium-high albedo” “Low albedo” and “High albedo”.

Key words: Surface albedo, Alpine region, Plant community, Latent profile analysis

中图分类号: