[1] LIN X, WEN J, LIU Q, et al. Spatiotemporal variability of land surface albedo over the Tibet plateau from 2001 to 2019[J]. Remote Sensing, 2020, 12(7):1188-1206 [2] LATTANZIO A, GOVAERTS Y M, PINTY B. Consistency of surface anisotropy characterization with meteosat observations[J]. Advances in Space Research, 2007, 39(1):131-135 [3] 于泽航, 董全民, 曹铨, 等. 不同放牧模式对祁连山高寒草甸植物群落特征的影响[J]. 草地学报, 2023, 31(9):2621-2627 [4] 肖登攀, 陶福禄, MOIWO J P. 全球变化下地表反照率研究进展[J]. 地球科学进展2011, 26(11):1217-1224 [5] 赵之重, 赵凯, 徐剑波, 等. 三江源地表反照率时空变化及其与气候因子的关系[J]. 干旱区研究, 2014, 31(6):1031-1038 [6] 邓孺孺. 青藏高原地表反照率反演及冷热源分析[D]. 北京:中国科学院研究生院(遥感应用研究所), 2002:11-25 [7] 冯超, 古松, 赵亮, 等. 青藏高原三江源区退化草地生态系统的地表反照率特征[J]. 高原气象, 2010, 29(1):70-77 [8] PANG G J, CHEN D L, WANG X J. Spatiotemporal variations of land surface albedo and associated influencing factors on the tibetan plateau[J]. Science of the Total Environment, 2022, 804(12):150100-150116 [9] 王瑾杰, 丁建丽, 张子鹏. 基于遥感生态指数的吐哈地区生态环境变化研究[J]. 干旱区地理, 2022, 45(5):1591-1603 [10] 王波, 柳小妮, 王洪伟, 等. 东祁连山高寒灌丛六种灌木植物的光谱特征分析[J]. 光谱学与光谱分析, 2019, 39(5):1509-1516 [11] 徐斌, 陶伟国, 杨秀春, 等. 中国草原植被长势MODIS遥感监测[J]. 草地学报, 2006, 14(3):242-247 [12] 陈爱军, 曹晓云, 韩琛惠, 等. 2000—2016年青藏高原地表反照率时空分布及动态变化[J]. 气候与环境研究, 2018, 23(3):355-365 [13] 孙树娇, 曹晓云, 肖建设, 等. 基于NDVI-Albedo特征空间的柴达木盆地荒漠化监测研究[J]. 干旱气象, 2023, 41(4):560-569 [14] SHI H L, LIU M P, ZHU S H, et al. Construction of an early warning system based on a fuzzy matter-element model for diagnosing the health of alpine grassland:a case study of henan county, qinghai, china[J]. Agronomy, 2023, 13(8):2176-2191 [15] 陈春波, 李刚勇, 彭建, 等. 新疆草地生态健康智能监测网络体系构建[J]. 草业科学, 2023, 40(5):1420-1434 [16] 邱皓政. 潜在类别模型的原理与技术[M]. 北京:教育科学出版社, 2008:3-8 [17] WU H, LI Z. Scale issues in remote sensing:a review on analysis processing and modeling[J]. Sensors. 2009, 9(3):1768-1793 [18] 邓得婷, 武玉坤, 赖锋, 等. 不同高寒草地植物群落生态系统多功能性分析[J]. 草地学报, 2023, 31(8):2505-2515 [19] NASA LP DAAC. MODIS Terra +Aqua BRDF/Albedo Model Parameters 16-Day L3 Global 500 m SIN Grid V061 (MCD43A3) [EB/OL]. https://lpdaac.usgs.gov/products/mcd43a3v061/, 2020-06-7/2024-03-12 [20] 乔占明, 王晓波, 杨柳, 等. Landsat8数据植被覆盖度遥感反演模型研究[J]. 青海师范大学学报(自然科学版), 2019, 35(1):54-58 [21] ROMÁN M O, SCHAAF C B, LEWIS P, et al. Assessing the coupling between surface albedo derived from modis and the fraction of diffuse skylight over spatially-characterized landscapes[J]. Remote Sensing of Environment, 2010, 114(4):738-760 [22] SCHAAF C B, GAO F, STRAHLER A H, et al. First operational brdf, albedo nadir reflectance products from modis[J]. Remote Sensing of Environment, 2002, 83(1/2):135-148 [23] 王孟成, 毕向阳. 潜变量建模与Mplus应用:进阶篇[M]. 重庆:重庆大学出版社, 2018:13-15 [24] GIBSON W A. Three multivariate models:factor analysis, latent structure analysis, and latent profile analysis [J]. Psychometrika, 1959, 24(3):229-252 [25] DAYTON C M, MACREADY, et al. Use of categorical and continuous covariates in latent class analysis[M]. Cambridge:Cambridge University Press, 2002:213-233 [26] 张艳.黑河下游额济纳绿洲蒸散量的遥感估算[D].西安:西安科技大学, 2019:16-23 [27] 文妙霞, 何学高, 刘欢, 等. 基于地理探测器的宁夏草地植被覆被时空分异及驱动因子[J]. 干旱区研究, 2023, 40(8):1322-1332 [28] PRASANTA S, MALCOLM R. Philosophy of statistics[M]. Holland:North Holland, 2011:583-605 [29] LUBKE G, MUTHÉN B O. Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters[J]. Structural Equation Modeling:A Multidisciplinary Journal, 2007, 14(1):26-47 [30] WEI H D. The characteristic analysis of canopy spectrum and moisture content of 10 typical arid desert plants[J]. Journal of Energy and Natural Resources, 2019, 8(1):6-6 [31] VALENTIN N, DAVID C. Latent class analysis[J]. The Journal of Hand Surgery, 2013, 38(5):1018-1020 [32] 王舒默, 胡永红, 王式功, 等. 植被功能型差异对地表反照率时空分布的影响分析[J]. 遥感技术与应用, 2015, 30(5):932-938 [33] 张乐乐, 高黎明, 陈克龙. 青海湖流域瓦颜山湿地辐射平衡和地表反照率变化特征[J]. 冰川冻土, 2018, 40(6):1216-1222 [34] 侯春华, 李富平, 何宝杰, 等. 地表反照率和植被覆盖度对矿区热环境的影响[J]. 哈尔滨工业大学学报, 2022, 54(12):117-126 [35] 王磊, 耿君, 杨冉冉, 等. 高分一号卫星影像特征及其在草地监测中的应用[J]. 草地学报, 2015, 23(5):1093-1100 [36] HE T, LIANG S, SONG D. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981—2010 from multiple satellite products[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(17):10281-10298 [37] 杨妍希. 三江源高寒草地退化恢复的水热效应研究[D]. 荆州:长江大学, 2023:53-55 [38] CHEN Z R, DONG Y, HUANG X. Plant responses to uv-b radiation:signaling, acclimation and stress tolerance[J].Stress Biology, 2022, 2 (51):1-10 [39] 许大全. 光合作用效率[J]. 植物生理学通讯, 1988(5):3-9 [40] LIN Y, HUANG Y, LORAAMM R, et al. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects[J]. Field Crops Research, 2014, 156(2):199-207 [41] REI S, HIROTO Y, HARUMI M, et al. Hyperspectral reflectance sensing for quantifying leaf chlorophyll content in wasabi leaves using spectral pre-processing techniques and machine learning algorithms[J]. International Journal of Remote Sensing, 2021, 42(4):1311-1329 [42] ZHAO Y C, WANG X Y, NOVILLO C J, et al. Remotely sensed albedo allows the identification of two ecosystem states along aridity gradients in africa[J]. Land Degradation and Development, 2019, 30(12):1502-1515 [43] 万红, 郭鹏, 骆磊, 等. 基于生态多稳态的山地植被垂直自然带定量识别研究——以新疆博格达山为例[J]. 遥感学报, 2022, 26(11):2234-2247 |