[1] GILLIAM F S. The ecological significance of the herbaceous layer in temperate forest ecosystems[J]. BioScience, 2007, 57(10):845-858 [2] WU H F, GAO T, ZHANG W, et al. Understory vegetation composition and stand are mainly limited by soil moisture in black locust plantations of Loess Plateau[J]. Forests, 2021, 12(2):195 [3] LIU Y, SHANG Q, WANG L, et al. Effects of understory shrub biomass on variation of soil respiration in a temperate-subtropical transitional oak forest[J]. Forests, 2019, 10(2):88 [4] TIAN K, CHAI P, WANG Y, et al. Species diversity pattern and its drivers of the understory herbaceous plants in a Chinese subtropical forest[J]. Frontiers in Ecology and Evolution, 2023, 10:1113742 [5] LANDUYT D, DE LOMBAERDE E, PERRING M P, et al. The functional role of temperate forest understorey vegetation in a changing world[J]. Global Change Biology, 2019, 25(11):3625-3641 [6] 徐雪蕾, 孙玉军, 周华, 等. 间伐强度对杉木人工林林下植被和土壤性质的影响[J]. 林业科学, 2019, 55(3):1-12 [7] CARR C A, KRUEGER W C. Understory vegetation and ponderosa pine abundance in eastern Oregon[J]. Rangeland Ecology and Management, 2011, 64(5):533-542 [8] CHASE J M, LEIBOLD M A. Ecological niches:Linking classical and contemporary approaches[M]. Chicago:University of Chicago Press, 2009:144-174 [9] ZHANG L, ZHANG H L, CHEN Y, et al. Analyses of community stability and inter-specific associations between a plant species with extremely small populations (Hopea hainanensis) and its associated species[J]. Frontiers in Ecology and Evolution, 2022, 10:922829 [10] TIMILSINA N, JR W P C, ESCOBEDO F J, et al. Predicting understory species richness from stand and management characteristics using regression trees[J]. Forests, 2013, 4(1):122-136 [11] GLICK M D, MATLACK G R. Tree-base microsites contribute to physical heterogeneity and herb community structure in a temperate deciduous forest[J]. Journal of Vegetation Science, 2021, 32(1):e12943 [12] ALI A, DAI D, AKHTAR K, et al. Response of understory vegetation, tree regeneration, and soil quality to manipulated stand density in a Pinus massoniana plantation[J]. Global Ecology and Conservation, 2019, 20:e00775 [13] LESSER J S, JAMES W R, STALLINGS C D, et al. Trophic niche size and overlap decreases with increasing ecosystem productivity[J]. Oikos, 2020, 129(9):1303-1313 [14] MARTÍNEZ-MEYER E, DÍAZ-PORRAS D, PETERSON A T, et al. Ecological niche structure and range wide abundance patterns of species[J]. Biology Letters, 2013, 9(1):20120637 [15] 孙建财, 杨沙, 武玉坤, 等. 高寒混播草地优势草种生态位与种间竞争力分析[J]. 草地学报, 2022, 30(5):1273-1279 [16] 郄亚栋, 滕德雄, 吕光辉. 干旱荒漠区植物生态位对水盐的响应[J]. 生态学报, 2019, 39(8):2899-2910 [17] JUAN W, JUNJIE L, CHAO L, et al. Species niche and interspecific associations alter flora structure along a fertilization gradient in an alpine meadow of Tianshan Mountain, Xinjiang[J]. Ecological Indicators, 2023, 147:109953 [18] KERMAVNAR J, KUTNAR L, MARINŠEK A, et al. Are ecological niche optimum and width of forest plant species related to their functional traits?[J]. Flora, 2023, 301:152247 [19] HU Y, WANG H, JIA H, et al. Ecological niche and interspecific association of plant communities in alpine desertification grasslands:A case study of Qinghai Lake basin[J]. Plants, 2022, 11(20):2724 [20] ADLER P B, SMULL D, BEARD K H, et al. Competition and coexistence in plant communities:intraspecific competition is stronger than interspecific competition[J]. Ecology Letters, 2018, 21(9):1319-1329 [21] 李坚锋, 潘萍, 欧阳勋志, 等. 庐山常绿阔叶林种间联结性及物种共存机制[J]. 生态学杂志, 2022, 41(8):1474-1481 [22] ROUSSET O, LEPART J. Positive and negative interactions at different life stages of a colonizing species (Quercus humilis)[J]. Journal of Ecology, 2000, 88(3):401-412 [23] MAIHAITI M, ZHANG W J. A mini review on theories and measures of interspecific associations[J]. Selforganizology, 2014, 1(3-4):206-210 [24] WU S, WEN L, DONG S, et al. The plant interspecific association in the revegetated alpine grasslands determines the productivity stability of plant community across restoration time on Qinghai-Tibetan plateau[J]. Frontiers in Plant Science, 2022, 13:850854 [25] 刘子赫, 贾国栋, 刘自强, 等. 北京山区侧柏用水来源随水分条件变化的多时间尺度[J]. 林业科学, 2022, 58(3):40-47 [26] WHITTAKER R H. Dominance and diversity in land plant communities:Numerical relations of species express the importance of competition in community function and evolution[J]. Science, 1965, 147(3655):250-260 [27] 张金屯. 数量生态学[M]. 第3版.北京:科学出版社, 2018:160-163 [28] SCHLUTER D. A variance test for detecting species associations, with some example applications[J]. Ecology, 1984, 65(3):998-1005 [29] 晏昕辉, 拓行行, 李美慧, 等. 宁夏云雾山典型草原半灌木扩张过程中植物种间联结性研究[J]. 草地学报, 2023, 31(1):230-238 [30] 金山, 武帅楷. 太行山南段油松林火烧迹地优势草本生态位及种间关系[J]. 北京林业大学学报, 2021, 43(4):35-46 [31] YUAN Z, WEI B, CHEN Y, et al. How do similarities in spatial distributions and interspecific associations affect the coexistence of Quercus species in the Baotianman National Nature Reserve, Henan, China[J]. Ecology and Evolution, 2018, 8(5):2580-2593 [32] 宋红艳, 孙彩丽, 柴宗政. 黔西北铅锌矿废渣场优势草本植物种群生态位及种间关系[J]. 草地学报, 2022, 30(10):2764-2771 [33] INGRAM T, COSTA-PEREIRA R, ARAÚJO M S. The dimensionality of individual niche variation[J]. Ecology, 2018, 99(3):536-549 [34] ROSCHER C, SCHUMACHER J, GUBSCH M, et al. Interspecific trait differences rather than intraspecific trait variation increase the extent and filling of community trait space with increasing plant diversity in experimental grasslands[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 33:42-50 [34] TILMAN D. Causes, consequences and ethics of biodiversity[J]. Nature, 2000, 405(6783):208-211 [35] MA Y, LI Q, PAN S, et al. Niche and interspecific associations of Pseudoanabaena limnetica-Exploring the influencing factors of its succession stage[J]. Ecological Indicators, 2022, 138:108806 [37] 杨玉凤, 武利玉, 马永林, 等. 不同类型侧柏人工林下草本层植物多样性及其生物量研究[J]. 西北林学院学报, 2023, 38(2):61-68 [38] OOMMEN M A, SHANKER K. Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants[J]. Ecology, 2005, 86(11):3039-3047 [39] CAMARERO J J, GUTIÉRREZ E, FORTIN M J. Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries[J]. Global Ecology and Biogeography, 2006, 15(2):182-191 [40] GÖTZENBERGER L, DE BELLO F, BRÅTHEN K A, et al. Ecological assembly rules in plant communities-approaches, patterns and prospects[J]. Biological Reviews, 2012, 87(1):111-127 [41] JIN S S, ZHANG Y Y, ZHOU M L, et al. Interspecific association and community stability of tree species in natural secondary forests at different altitude gradients in the Southern Taihang Mountains[J]. Forests, 2022, 13(3):373 [42] HOOPER D U, CHAPIN III F S, EWEL J J, et al. Effects of biodiversity on ecosystem functioning:a consensus of current knowledge[J]. Ecological Monographs, 2005, 75(1):3-35 [43] PASTORE A I, BARABÁS G, BIMLER M D, et al. The evolution of niche overlap and competitive differences[J]. Nature Ecology and Evolution, 2021, 5(3):330-337 [44] ARELLANO G, UMAÑA M N, MACÍA M J, et al. The role of niche overlap, environmental heterogeneity, landscape roughness and productivity in shaping species abundance distributions along the Amazon-Andes gradient[J]. Global Ecology and Biogeography, 2017, 26(2):191-202 [45] 邓莉萍, 白雪娇, 李露露, 等. 辽东山区次生林优势木本植物种间联结与相关分析[J]. 生态学杂志, 2015, 34(6):1473-1479 |