[1] 章异平,江源,刘全儒,等. 放牧压力下五台山高山、亚高山草甸的退化特征[J]. 资源科学,2008,30(10):1555-1563 [2] GROSSE G,JONES B M. Spatial distribution of pingos in northern Asia[J]. The Cryosphere,2011,5(1):13-33 [3] POLLARD W H,FRENCH H M. The groundwater hydraulics of seasonal frost mounds,North Fork Pass,Yukon Territory[J]. Canadian Journal of Earth Sciences,1984,21(10):1073-1081 [4] 吴吉春,盛煜,曹元兵,等. 青藏高原发现大型冻胀丘群[J]. 冰川冻土,2015,37(5):1217-1228 [5] 孙辉,秦纪洪,吴杨.土壤冻融交替生态效应研究进展[J]. 土壤,2008,40(4):505-509 [6] LI X,JIN R,PAN X D,et al. Changes in the near-surface soil freeze–thaw cycle on the Qinghai-Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation,2012,17:33-42 [7] LI N,CUO L,ZHANG Y. On the freeze-thaw cycles of shallow soil and connections with environmental factors over the Tibetan Plateau[J]. Climate Dynamics,2021,57(11-12):3183-3206 [8] 姚檀栋,秦大河,沈永平,等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J]. 自然杂志,2013,35(3):179-186 [9] 尚占环,董全民,施建军,等. 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展——兼论三江源生态恢复问题[J]. 草地学报,2018,26(1):1-21 [10] 田晓晖,张立锋,张翔,等. 三江源区退化高寒草甸蒸散特征及冻融变化对其的影响[J]. 生态学报,2020,40(16):5649-5662 [11] 周兴民,杨福囤,李秉文,等. 青藏公路南段植被与多年冻土的相互关系[J]. 植物学报,1978(1):13-19,91 [12] 杜子银,蔡延江,王小丹,等. 土壤冻融作用对植物生理生态影响研究进展[J]. 中国生态农业学报,2014,22(1):1-9 [13] 王洋,刘景双,王全英.冻融作用对土壤团聚体及有机碳组分的影响[J]. 生态环境学报,2013,22(7):1269-1274 [14] 范继辉,鲁旭阳,王小丹. 藏北高寒草地土壤冻融循环过程及水热分布特征[J]. 山地学报,2014,32(4):385-392 [15] 赵云朵,胡霞. 基于CT研究冻融对高寒草甸土壤孔隙结构的影响[J]. 水土保持学报,2020,34(3):362-367 [16] LEHRSCH G A,SOJKA R E,CARTER D L,et al. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter[J]. Soil Science Society of America Journal,1991,55(5):1401-1406 [17] 杜子银,王小丹,洪江涛,等. 冻融及牲畜排泄物作用下的高寒草地土壤物理特性和氮磷变化[J]. 山地学报,2022,40(1):29-42 [18] 邓西民,陈端生,王坚,等. 冻融作用对犁底层土壤物理性状的影响[J]. 科学通报,1998,43(23):2538-2541 [19] 高敏,李艳霞,张雪莲,等. 冻融过程对土壤物理化学及生物学性质的影响研究及展望[J]. 农业环境科学学报,2016,35(12):2269-2274 [20] 李贵圆,范昊明. 冻融作用对农田磷素转化迁移影响研究进展[J]. 中国水土保持科学,2011,9(6):114-120 [21] FREPPAZ M,WILLIAMS B L,EDWARDS A C,et al. Simulating soil freeze/thaw cycles typical of winter alpine conditions:Implications for N and P availability[J]. Applied Soil Ecology,2007,35(1):247-255 [22] GROGAN P,MICHELSEN A,AMBUS P,et al. Freeze–thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biology and Biochemistry,2004,36(4):641-654 [23] 王洋,刘景双,王国平,等. 冻融作用与土壤理化效应的关系研究[J]. 地理与地理信息科学,2007,23(2):91-96 [24] SCHOSTAG M,PRIEMÉ A,JACQUIOD S,et al. Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil[J]. The ISME Journal,2019,13(5):1345-1359 [25] NIKRAD M P,KERKHOF L J,HÄGGBLOM M M. The subzero microbiome:microbial activity in frozen and thawing soils[J]. FEMS Microbiology Ecology,2016,92(6):fiw081 [26] STRES B,PHILIPPOT L,FAGANELI J,et al. Frequent freeze-thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils:a laboratory experiment[J]. FEMS Microbiology Ecology,2010,74(2):323-335 [27] YERGEAU E,KOWALCHUK G A. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency[J]. Environmental Microbiology,2008,10(9):2223-2235 [28] WALKER V K,PALMER G R,VOORDOUW G. Freeze-thaw tolerance and clues to the winter survival of a soil community[J]. Applied and Environmental Microbiology,2006,72(3):1784-1792 [29] MÄNNISTÖ M K,TIIROLA M,HÄGGBLOM M M. Effect of freeze-thaw cycles on bacterial communities of Arctic Tundra Soil[J]. Microbial Ecology,2009,57(3):621-631 [30] 王平. 青藏铁路多年冻土区冻胀丘发展特征及其对路基稳定性的影响[J]. 铁道标准设计,2013(5):1-4 [31] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,2000:40-60 [32] 孙国钧,张荣,周立. 植物功能多样性与功能群研究进展[J]. 生态学报,2003,23(7):1430-1435 [33] 马克平,黄建辉,于顺利,等. 北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数[J]. 生态学报,1995,15(3):268-277 [34] TANG L,DONG S,SHERMAN R,et al. Changes in vegetation composition and plant diversity with rangeland degradation in the alpine region of Qinghai-Tibet Plateau[J]. The Rangeland Journal,2015,37(1):107 [35] 李雪萍,许世洋,李敏权,等. 甘南州不同退化程度高寒草甸植被及土壤特性的演化规律[J]. 生态学报,2022,42(18):7541-7552 [36] PENG F,XUE X,LI C Y,et al. Plant community of alpine steppe shows stronger association with soil properties than alpine meadow alongside degradation[J]. Science of The Total Environment,2020,733:139048 [37] 罗方林,张法伟,王春雨,等. 青藏高原高寒草甸群落特征和代表性植物生存状态对草地退化的响应[J]. 生态学杂志,2022,41(1):18-24 [38] 李军豪,杨国靖,王少平. 青藏高原区退化高寒草甸植被和土壤特征[J]. 应用生态学报,2020,31(6):2109-2118 [39] XU H P,ZHANG J,PANG X P,et al. Responses of plant productivity and soil nutrient concentrations to different alpine grassland degradation levels[J]. Environmental Monitoring and Assessment,2019,191(11):678 [40] POORTER H,NIKLAS K J,REICH P B,et al. Biomass allocation to leaves,stems and roots:meta-analyses of interspecific variation and environmental control[J].New Phytologist,2012,193(1):30-50 [41] SUN D S,WESCHE K,CHEN D D,et al. Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow[J]. Plant,Soil and Environment,2011,57(6):271-278 [42] WANG X X,DONG S K,YANG B,et al. The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters[J]. Environmental Monitoring and Assessment,2014,186(10):6903-6917 [43] ZHANG D J,QI Q,TONG S Z,et al. Soil degradation effects on plant diversity and nutrient in tussock meadow wetlands[J]. Journal of Soil Science and Plant Nutrition,2019,19(3):535-544 [44] 孙海群,林冠军,李希来,等. 三江源地区高寒草甸不同退化草地植被群落结构及生产力分析[J]. 黑龙江畜牧兽医,2013(19):1-3 [45] 赵帅,杨文权,蔺宝珺,等. 祁连山国家公园不同退化高寒草甸植物与土壤特性研究[J]. 草地学报,2023,31(5):1530-1538 [46] 巩劼,陆林,晋秀龙,等. 黄山风景区旅游干扰对植物群落及其土壤性质的影响[J]. 生态学报,2009,29(5):2239-2251 [47] 杜志勇,丛楠. 植被与土壤特征对青藏高原不同程度退化草地的响应 [J]. 生态学报,2024,44(6):2504-2516 [48] 顾永超,李多才,侯扶江. 高寒草原季节牧场生物量对土壤水分的响应[J]. 草业科学,2019,36(6):1490-1497 [49] 王梦梦,张丽华,当知才让,等. 高寒湿地退化对植物群落特征与土壤特性的影响[J]. 生态学报,2023,43(19):7910-7923 [50] 刘旻霞,刘成,杨春亮. 甘南高寒草甸退化对植物功能群物种多样性与物种多度分布的影响[J]. 西北植物学报,2024,44(1):142-153 [51] 杨元合,饶胜,胡会峰,等. 青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系[J]. 生物多样性,2004,12(1):200-205 [52] LOREAU M,HECTOR A. Partitioning selection and complementarity in biodiversity experiments[J]. Nature, 2001,412(6842):72-76 [53] 江小雷,张卫国,严林,等. 植物群落物种多样性对生态系统生产力的影响[J]. 草业学报,2004,13(6):8-13 [54] 王增如,王成,董晓红,等. 环境因子影响下疏勒河上游高寒草甸物种丰富度与生物量间的关系[J]. 冰川冻土, 2016,38(6):1710-1717 [55] 周华坤,赵新全,周立,等. 青藏高原高寒草甸的植被退化与土壤退化特征研究[J]. 草业学报,2005,14(3):31-40 [56] 杨元武,李希来,周旭辉,等. 高寒草甸植物群落退化与土壤环境特征的关系研究[J]. 草地学报,2016,24(6):1211-1217 [57] 李海英,彭红春,王启基. 高寒矮嵩草草甸不同退化演替阶段植物群落地上生物量分析[J]. 草业学报,2004,13(5):26-32 [58] 王雪超,刘艳萍,高永,等. 旅游扰动对草原植被及土壤的影响[J]. 草原与草坪,2021,41(6):127-131,138 [59] 邵建翔,刘育红,马辉,等. 退化高寒草地浅层土壤理化性质Meta分析[J]. 草地学报,2022,30(6):1370-1378 [60] XIE H H,WU Q G,HU J Y,et al. Changes in soil physical and chemical properties during the process of alpine meadow degradation along the eastern Qinghai-Tibet Plateau[J]. Eurasian Soil Science,2018,51(12):1440-1446 [61] LI H Y,QIU Y Z,YAO T,et al. Nutrients available in the soil regulate the changes of soil microbial community alongside degradation of alpine meadows in the northeast of the Qinghai-Tibet Plateau[J]. Science of The Total Environment,2021,792:148363 [62] SHE Y D,ZHANG Z H,MA L,et al. Vegetation attributes and soil properties of alpine grassland in different degradation stages on the Qinghai-Tibet Plateau,China:a meta-analysis[J]. Arabian Journal of Geosciences,2022,15(2):193 [63] 李绍良,陈有君,关世英,等. 土壤退化与草地退化关系的研究[J]. 干旱区资源与环境,2002,16(1):92-95 [64] 魏强,王芳,陈文业,等. 黄河上游玛曲不同退化程度高寒草地土壤物理特性研究[J]. 水土保持通报,2010,30(5):16-21 [65] 魏茂宏,林慧龙. 江河源区高寒草甸退化序列土壤粒径分布及其分形维数[J]. 应用生态学报,2014,25(3):679-686 [66] 柴瑜,刘育红,魏卫东. 冻融作用对退化紫花针茅草原有机碳含量及组分的影响[J]. 黑龙江畜牧兽医,2019(13):97-102 [67] 韩露,万忠梅,孙赫阳. 冻融作用对土壤物理、化学和生物学性质影响的研究进展[J]. 土壤通报,2018,49(3):736-742 [68] 王艺璇,仲秋维,郑昕雨,等. 冻融循环对土壤性状特征影响研究进展[J]. 中国土壤与肥料,2022(10):231-240 [69] 梁东营,林丽,李以康,等. 三江源退化高寒草甸草毡表层剥蚀过程及发生机理的初步研究[J]. 草地学报,2010,18(1):31-36 [70] 魏卫东,刘育红,马辉,等. 三江源区退化高寒草甸浅层土壤冻融作用特征[J]. 生态与农村环境学报,2019,35(3):352-359 [71] 尚占环,丁玲玲,龙瑞军,等. 江河源区高寒草地土壤微生物数量特征[J]. 草原与草坪,2006,26(5):3-7 [72] 彭岳林,蔡晓布,薛会英. 退化高寒草原土壤微生物变化特性研究[J]. 西北农业学报,2007,16(4):112-115 [73] 姚拓,马丽萍,张德罡. 我国草地土壤微生物生态研究进展及浅评[J]. 草业科学,2005,22(11):1-7 [74] 阚海明,庞卓,陈超,等. 北京西北浅山区退化草地植被恢复对土壤微生物群落多样性的影响[J]. 草地学报,2022,30(6):1350-1358 [75] 金志薇,钟文辉,吴少松,等. 植被退化对滇西北高寒草地土壤微生物群落的影响[J]. 微生物学报,2018,58(12):2174-2185 [76] 罗正明,刘晋仙,赫磊,等. 基于分子生态学网络探究亚高山草甸退化对土壤微生物群落的影响[J]. 生态学报,2023,43(18):7435-7447 [77] VAN DER WAL A,VAN VEEN J A,SMANT W,et al. Fungal biomass development in a chronosequence of land abandonment[J]. Soil Biology and Biochemistry,2006,38(1):51-60 [78] 李海云,姚拓,高亚敏,等. 退化高寒草地土壤真菌群落与土壤环境因子间相互关系[J]. 微生物学报,2019,59(4):678-688 [79] 王英成,姚世庭,金鑫,等. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报,2022,31(4):695-703 [80] HERRERA PAREDES S,LEBEIS S L. Giving back to the community:microbial mechanisms of plant-soil interactions[J]. Functional Ecology,2016,30(7):1043-1052 [81] 卢虎,姚拓,李建宏,等. 高寒地区不同退化草地植被和土壤微生物特性及其相关性研究[J]. 草业学报,2015,24(5):34-43 [82] 王启兰,曹广民,王长庭. 高寒草甸不同植被土壤微生物数量及微生物生物量的特征[J]. 生态学杂志,2007,26(7):1002-1008 [83] 杨明新,陈科宇,李成先,等. 三江源区高寒草原退化对不同生长期土壤真菌群落的影响[J]. 草业科学,2024,41(1):15-25 [84] BARDGETT R D,VAN DER PUTTEN W H. Belowground biodiversity and ecosystem functioning[J]. Nature,2014,515:505-511 [85] LI Y X,WANG L X,TIAN L,et al. Dissolved organic carbon,an indicator of soil bacterial succession in restored wetland under freeze-thaw cycle[J]. Ecological Engineering,2022,177:106569 [86] LI Y M,WANG S P,JIANG L L,et al. Changes of soil microbial community under different degraded gradients of alpine meadow[J]. Agriculture,Ecosystems & Environment,2016,222:213-222 [87] 李强,何国兴,刘志刚,等. 东祁连山高寒草甸植被特征和生物多样性对生境的响应[J]. 草地学报,2022,30(1):169-177 [88] 秦浩,李蒙爱,高劲,等. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报,2023,32(3):459-468 [89] 王婷,杨思维,花蕊,等. 高寒草原植物功能群组成对退化程度的响应[J]. 生态学报,2020,40(7):2225-2233 [90] 郭金瑞,宋振伟,朱平,等. 长期不同种植模式对东北黑土微生物群落结构与土壤理化性质的影响[J]. 土壤通报,2016,47(2):353-359 [91] 张玉琪,梁婷,张德罡,等. 祁连山东段退化高寒草甸土壤水分入渗的变化及团聚体对水分入渗的影响[J]. 草地学报,2020,28(2):500-508 |