Acta Agrestia Sinica ›› 2025, Vol. 33 ›› Issue (12): 3859-3873.DOI: 10.11733/j.issn.1007-0435.2025.12.001
• 2025-12-28 •
YANG Xin-yu1, HU Tao2, XU Bin3, XU Li-xin1, HAN Lie-bao1
Received:2024-12-20
Revised:2025-03-04
Published:2025-12-01
杨馨雨1, 胡涛2, 徐彬3, 许立新1, 韩烈保1
通讯作者:
韩烈保,E-mail:hanliebao@163.com
作者简介:杨馨雨(2000-),女,汉族,甘肃兰州人,硕士研究生,主要从事草地植物栽培与育种研究,E-mail:xinyuyang_yxy07@163.com;
基金资助:CLC Number:
YANG Xin-yu, HU Tao, XU Bin, XU Li-xin, HAN Lie-bao. Gene Editing Technology Development and Its Application in Turfgrass Species[J]. Acta Agrestia Sinica, 2025, 33(12): 3859-3873.
杨馨雨, 胡涛, 徐彬, 许立新, 韩烈保. 基因编辑技术在草坪草中的应用[J]. 草地学报, 2025, 33(12): 3859-3873.
| [1] PUCHTA H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution[J]. Journal of Experimental Botany, 2005,56(409):1-14 [2] CRISTEA S, FREYVERT Y, SANTIAGO Y, et al. In vivo cleavage of transgene donors promotes nuclease‐mediated targeted integration[J]. Biotechnology and Bioengineering, 2013, 110(3): 871-880 [3] MARESCA M, LIN V G, GUO N, et al. Obligate Ligation-Gated Recombination (ObLiGaRe): Custom-designed nuclease-mediated targeted integration through nonhomologous end joining[J]. Genome Research, 2013,23(3):539-546 [4] BORTESI L, FISCHER R. The CRISPR/Cas9 system for plant genome editing and beyond[J]. Biotechnology Advances, 2015,33(1):41-52 [5] LIU Y G,LI G S,ZHANG Y L,et al. Current advances on CRISPR/Cas genome editing technologies in plants[J]. Journal of South China Agricultural University,2019,40(5):38-49 刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 2019,40(5):38-49 [6] OSAKABE Y, OSAKABE K. Genome Editing with Engineered Nucleases in Plants[J]. Plant and Cell Physiology, 2015,56(3):389-400 [7] WANG H, LA RUSSA M, QI L S. CRISPR/Cas9 in Genome Editing and Beyond[J]. Annual Review of Biochemistry, 2016,85(1):227-264 [8] SHAN Q, WANG Y, LI J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology, 2013,31(8):686-688 [9] LI J, MENG X, ZONG Y, et al. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9[J]. Nature Plants, 2016,2(10):16139 [10] NEKRASOV V, STASKAWICZ B, WEIGEL D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease[J]. Nature Biotechnology, 2013,31(8):691-693 [11] XIE K, YANG Y. RNA-Guided Genome Editing in Plants Using a CRISPR-Cas System[J]. Molecular Plant, 2013,6(6):1975-1983 [12] ZHAO H, ZHAO S, CAO Y, et al. Development of a single transcript CRISPR/Cas9 toolkit for efficient genome editing in autotetraploid alfalfa[J]. The Crop Journal,2024,12(3):788-795 [13] LI L J,ZHANG N,ZHANG Z W,et al. ZjSGR gene editing of Zoysia Japonica using the CRISPR/Cas9 system[J]. Pratacultural Science,2020,37(5):864-871 李丽菁, 张娜, 张智韦, 等. 利用CRISPR/Cas9系统编辑日本结缕草ZjSGR基因技术研究[J]. 草业科学, 2020,37(5):864-871 [14] PORTEUS M H, CARROLL D. Gene targeting using zinc finger nucleases[J]. Nature Biotechnology, 2005,23(8):967-973 [15] BITINAITE J, WAH D A, AGGARWAL A K, et al. Fok I dimerization is required for DNA cleavage[J]. Proceedings of the National Academy of Sciences, 1998,95(18):10570-10575 [16] WU J, KANDAVELOU K, CHANDRASEGARAN S. Custom-designed zinc finger nucleases: What is next [J]. Cellular and Molecular Life Sciences, 2007,64(22):2933-2944 [17] KIM Y G, CHA J, CHANDRASEGARAN S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain.[J]. Proceedings of the National Academy of Sciences, 1996,93(3):1156-1160 [18] DEFRANCESCO L. Move over ZFNs: a new technology for genome editing may put the zinc finger nuclease franchise out of business, some believe. Not so fast, say the finger people[J]. Nature Biotechnology, 2011,29(8):681-685 [19] MOSCOU M J, BOGDANOVE A J. A Simple Cipher Governs DNA Recognition by TAL Effectors[J]. SCIENCE, 2009,326(5959):1501-1501 [20] BOCH J, SCHOLZE H, SCHORNACK S, et al. Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors[J]. SCIENCE, 2009,326(5959):1509-1512 [21] CHANDRASEGARAN S, CARROLL D. Origins of Programmable Nucleases for Genome Engineering[J]. Journal of Molecular Biology, 2016,428(5):963-989 [22] GUPTA R M, MUSUNURU K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9[J]. The Journal of clinical investigation, 2014,124(10):4154-4161 [23] GODDE J S, BICKERTON A. The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer Among Prokaryotes[J]. Journal of Molecular Evolution, 2006,62(6):718-729 [24] SEED K D, LAZINSKI D W, CALDERWOOD S B, et al. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity[J]. Nature, 2013,494(7438):489-491 [25] KOONIN E V, MAKAROVA K S, ZHANG F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 2017,37:67-78 [26] ZHAN X, LU Y, ZHU J, et al. Genome editing for plant research and crop improvement[J]. Journal of Integrative Plant Biology, 2021, 63(1): 3-33 [27] MAHFOUZ M M, PIATEK A, STEWART C N. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives[J]. Plant Biotechnology Journal, 2014,12(8):1006-1014 [28] BARRANGOU R. CRISPR‐Cas systems and RNA‐guided interference[J]. WIREs RNA, 2013,4(3):267-278 [29] GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences, 2012,109(39):E2579-E2586 [30] JINEK M, CHYLINSKI K, FONFARA I, et al. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity[J]. Science, 2012,337(6096):816-821 [31] QI L S, LARSON M H, GILBERT L A, ET AL. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression[J]. Cell, 2013,152(5):1173-1183 [32] TYCKO J, MYER V E, HSU P D. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity[J]. Molecular Cell, 2016,63(3):355-370 [33] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System[J]. Cell, 2015,163(3):759-771 [34] LI S, ZHANG X, WANG W, et al. Expanding the Scope of CRISPR/Cpf1-Mediated Genome Editing in Rice[J]. Molecular Plant, 2018,11(7):995-998 [35] ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019,576(7785):149-157 [36] ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR–Cas13[J]. Nature, 2017,550(7675):280-284 [37] COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-Cas13[J]. 2017,358(6366):1019-1027 [38] KONERMANN S, LOTFY P, BRIDEAU N J, et al. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors[J]. Cell, 2018,173(3):665-676 [39] GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017,551(7681):464-471 [40] KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016,533(7603):420-424 [41] LI C, ZONG Y, WANG Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biology, 2018(19):1-9 [42] KANTOR A, MCCLEMENTS M E, MACLAREN R E. CRISPR-Cas9 DNA base-editing and prime-editing[J]. International journal of molecular sciences, 2020,21(17):6240 [43] YANG L, ZHANG X, WANG L, et al. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants[J]. Protein & cell, 2018, 9(9): 814-819 [44] XIE J, HUANG X, WANG X, et al. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems[J]. BMC Biology, 2020(18):1-14 [45] KURT I C, ZHOU R, IYER S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nature Biotechnology, 2021,39(1):41-46 [46] ZHAO D, LI J, LI S, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology, 2021,39(1):35-40 [47] TONG H, LIU N, WEI Y, et al. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase[J]. National Science Review, 2023, 10(8): nwad143 [48] ANZALONE A V, GAO X D, Podracky C J, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing[J]. Nature biotechnology, 2022,40(5):731-740 [49] SUN C, LEI Y, LI B, et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors[J]. Nature Biotechnology, 2024,42(2):316-327 [50] YARNALL M T N, IOANNIDI E I, SCHMITT-ULMS C, et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases[J]. Nature Biotechnology, 2023,41(4):500-512 [51] VILLIGER L, JOUNG J, KOBLAN L, et al. CRISPR technologies for genome, epigenome and transcriptome editing[J]. Nature Reviews Molecular Cell Biology,2024:1-24 [52] AWAN M J A, MAHMOOD M A, NAQVI R Z, et al. PASTE: a high-throughput method for large DNA insertions[J]. Trends in Plant Science, 2023,28(5):509-511 [53] STRECKER J, LADHA A, GARDNER Z, et al. RNA-guided DNA insertion with CRISPR-associated transposases[J]. Science, 2019,365(6448):48-53 [54] KACZMARSKA Z, CZARNOCKI-CIECIURA M, GÓRECKA-MINAKOWSKA K M, et al. Structural basis of transposon end recognition explains central features of Tn7 transposition systems[J]. Molecular cell, 2022,82(14):2618-2632 [55] WEI J, LI Y. CRISPR-based gene editing technology and its application in microbial engineering[J]. Engineering Microbiology, 2023,3(4):100101 [56] CHENG Z H, WU J, LIU J Q, et al. Repurposing CRISPR RNA-guided integrases system for one-step, efficient genomic integration of ultra-long DNA sequences[J]. Nucleic Acids Research, 2022,50(13):7739-7750 [57] ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987,169(12):5429-5433 [58] LI J F, NORVILLE J E, AACH J, et al. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nature Biotechnology, 2013,31(8):688-691 [59] ZHANG Y, BAI Y, WU G, et al. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat[J]. Plant Journal, 2017,91(4):714-724 [60] LUO M, GILBERT B, AYLIFFE M. Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants[J]. Plant Cell Reports, 2016,35(7):1439-1450 [61] ČERMÁK T, BALTES N J, ČEGAN R, et al. High-frequency, precise modification of the tomato genome[J]. Genome Biology, 2015,16(1):232 [62] SVITASHEV S, YOUNG J K, SCHWARTZ C, et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA[J]. Plant Physiology, 2015,169(2):931-945 [63] LI Z, LIU Z B, XING A, et al. Cas9-Guide RNA Directed Genome Editing in Soybean[J]. Plant Physiology, 2015,169(2):960-970 [64] BUTT H, EID A, ALI Z, et al. Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule[J]. Frontiers in Plant Science, 2017,8:1441 [65] WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4[J]. Transgenic Research, 2018,27(1):25-38 [66] TONG C, WU F, YUAN Y, et al. High‐efficiency CRISPR /Cas‐based editing of Phalaenopsis orchid MADS genes[J]. Plant Biotechnology Journal, 2020,18(4):889-891 [67] MICHNO J M, WANG X, LIU J, et al. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme[J]. GM CROPS & FOOD-BIOTECHNOLOGY IN AGRICULTURE AND THE FOOD CHAIN, 2015,6(4):243-252 [68] MENG Y, HOU Y, WANG H, et al. Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula[J]. Plant Cell Reports, 2017,36(2):371-374 [69] DU S M. Functional analysis of small GTP-binding proteins activating protein MtArfGAP in Medicago Truncatula[D]. Guangzhou:South China Agricultural University,2017:37 杜思梦. 截形苜蓿MtArfGAP功能的初步研究[D]. 广东:华南农业大学, 2017:37 [70] ZHOU C C. Cloning of MtCOMT gene,construction of CRISPR/Cas9 vector and transformation of Medicago truncatula[D]. Harbin:Harbin Normal University,2020:37 周嫦嫦. MtCOMT基因克隆、CRISPR/Cas9载体构建及转化蒺藜苜蓿的研究[D]. 哈尔滨:哈尔滨师范大学, 2020:37 [71] YE Q, MENG X, CHEN H, et al. Construction of genic male sterility system by CRISPR/Cas9 editing from model legume to alfalfa[J]. Plant Biotechnology Journal, 2022,20(4):613-615 [72] LEBEDEVA M A, DOBYCHKINA D A, LUTOVA L A. CRISPR/Cas9-mediated knock-out of the MtCLE35 gene highlights its key role in the control of symbiotic nodule numbers under high-nitrate conditions[J]. International Journal of Molecular Sciences, 2023,24(23):16816 [73] GÜNGÖR B, BIRÓ J B, DOMONKOS Á, et al. Targeted mutagenesis of Medicago truncatula Nodule-specific Cysteine-Rich (NCR) genes using the Agrobacterium rhizogenes-mediated CRISPR/Cas9 system[J]. Scientific Reports, 2023,13(1):20676 [74] GAO R, FEYISSA B A, CROFT M, et al. Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa[J]. Planta, 2018,247(4):1043-1050 [75] WOLABU T W, CONG L, PARK J J, et al. Development of a highly efficient multiplex genome editing system in outcrossing tetraploid alfalfa (Medicago sativa)[J]. Frontiers in Plant Science, 2020,11:1063 [76] WOLABU T W, MAHMOOD K, JEREZ I T, et al. Multiplex CRISPR/Cas9‐mediated mutagenesis of alfalfa FLOWERING LOCUS Ta1 ( MsFTa1 ) leads to delayed flowering time with improved forage biomass yield and quality[J]. Plant Biotechnology Journal, 2023,21(7):1383-1392 [77] SINGER S D, BURTON HUGHES K, SUBEDI U, et al. The CRISPR/Cas9-Mediated modulation of Squamosa Promoter-Binding Protein-Like 8 in alfalfa leads to distinct phenotypic outcomes[J]. Frontiers in Plant Science, 2022,12:774146 [78] ZHENG L, WEN J, LIU J, et al. From model to alfalfa: Gene editing to obtain semidwarf and prostrate growth habits[J]. The Crop Journal, 2022,10(4):932-941 [79] LI L,XU M Z,LIU Y R,et al. Codon bias analysis of Medicago genome[J]. Acta Agrestia Sinica,2024,23(9):2695-2706 李琳,徐明志,刘燕蓉,等.苜蓿基因组密码子偏好性分析[J].草地学报,2024,23(9):2695-2706 [80] PARK J J, YOO C G, FLANAGAN A, et al. Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release[J]. Biotechnology for Biofuels, 2017,10(1):284 [81] QIU R,HE F,LI R,et al. Highly efficient gene editing of lignin gene F5H in switchgrass[J]. Chinese Bulletin of Botany,2023,58(2):298-307 邱锐,何峰,李瑞,等.柳枝稷木质素基因F5H的高效编辑[J].植物学报,2023,58(2):298-307 [82] LIU Y, MERRICK P, ZHANG Z, et al. Targeted mutagenesis in tetraploid switchgrass ( Panicum virgatum L.) using CRISPR/Cas9[J]. Plant Biotechnology Journal, 2018,16(2):381-393 [83] LIU Y, WANG W, YANG B, et al. Functional Analysis of the teosinte branched 1 Gene in the Tetraploid Switchgrass (Panicum virgatum L.) by CRISPR/Cas9-Directed Mutagenesis[J]. Frontiers in Plant Science, 2020,11:572193 [84] TENG K, CHANG Z H, XIAO G Z, et al. Molecular cloning and characterization of a chlorophyll degradation regulatory gene (ZjSGR) from Zoysia japonica[J]. Genetics and Molecular Research, 2016,15(2):8176 [85] ZHANG R. Study on CRISPR/Cas9-mediated DNA-free gene editing of ZjSGR in Zoysia Japonica[D]. Beijing:Beijing Forestry University,2019:10-20 张睿. CRISPR/Cas9介导无外源DNA日本结缕草ZjSGR基因编辑技术研究[D]. 北京:北京林业大学,2019:10-20 [86] MAO Y Y,LI L J,LI J C,et al. Gene functional analysis of ZjSGR gene in Zoysia Japonica leaves in response to vitro stress[J]. Acta Agrestia Sinica,2022,30(6):1396-1402 茅远煜,李丽菁,李进超,等.结缕草ZjSGR基因在离体模拟逆境胁迫环境下的功能[J].草地学报,2022,30(6):1396-1402 [87] NG H M, GONDO T, TANAKA H, et al. CRISPR/Cas9-mediated knockout of NYC1 gene enhances chlorophyll retention and reduces tillering in Zoysia matrella (L.) Merrill[J]. Plant Cell Reports, 2024,43(2):50 [88] ZHANG Y, RAN Y, NAGY I, et al. Targeted mutagenesis in ryegrass ( Lolium spp.) using the CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020,18(9):1854-1856 [89] JIANG Q Q. Construction of CRISPR/Cas9 targeted editing vectors for LpCKX1 gene and the establishment of genetic transformation system in Lolium perenne L[D]. Yantai:Yantai University,2020:66-67 姜倩倩. 多年生黑麦草LpCKX1基因CRISPR/Cas9靶向编辑载体的构建及遗传转化体系的建立[D]. 烟台:烟台大学, 2020:66-67 [90] KUMAR R, KAMUDA T, BUDHATHOKI R, et al. Agrobacterium- and a single Cas9-sgRNA transcript system-mediated high efficiency gene editing in perennial ryegrass[J]. Frontiers in Genome Editing, 2022, 4:960414 [91] YAO J M,HAO H H,ZHANG J,et al. The use of the tRNA-sgRNA/Cas9 system for gene editing in perennial ryegrass protoplasts[J]. Acta Prataculturae Sinica,2023,32(4):129-141 姚佳明, 郝欢欢, 张敬, et al. tRNA-sgRNA/Cas9系统介导多年生黑麦草原生质体的基因编辑[J]. 草业学报, 2023,32(4):129-141 [92] ZHANG L, WANG T, WANG G, et al. Simultaneous gene editing of three homoeoalleles in self‐incompatible allohexaploid grasses[J]. Journal of Integrative Plant Biology, 2021,63(8):1410-1415 [93] BI A, WANG T, WANG G, et al. Stress memory gene FaHSP17.8-CII controls thermotolerance via remodeling PSII and ROS signaling in tall fescue[J]. Plant Physiology, 2021,187(3):1163-1176 [94] MAY D, SANCHEZ S, GILBY J, et al. Multi-allelic gene editing in an apomictic, tetraploid turf and forage grass (Paspalum notatum Flüggé) using CRISPR/Cas9[J]. Frontiers in Plant Science, 2023,14:1225775 [95] ZHANG D B,LUO Y,CHEN W J. Current development of gene editing[J]. Chinese Journal of Biotechnology,2020,36(11):2345-2356 章德宾, 罗瑶, 陈文进. 基因编辑技术发展现状[J]. 生物工程学报, 2020, 36(11):2345-2356 [96] JIAO Y,WU G,HUANG Y H,et al. Genome editing technology and its safety evaluation management[J]. Journal of Agricultural Science and Technology,2018,20(4):12-19 焦悦, 吴刚, 黄耀辉, 等. 基因组编辑技术及其安全评价管理[J]. 中国农业科技导报, 2018,20(4):12-19 [97] LIU X G,QIAN B X,SUN J Q,et al. Research progress and prospects of maize gene editing[J]. Journal of Jilin Agricultural University,2025,47(2):191-201 刘相国, 钱步轩, 孙佳琪, 等. 玉米基因编辑研究进展和前景展望[J]. 吉林农业大学学报,2025,47(2):191-20 [98] LI X. Research on legal regulation of agricultural gene editing organisms[D]. Wuhan:Huazhong Agricultural University,2023:45-46 李欣. 农业基因编辑生物法律规制问题研究[D]. 武汉:华中农业大学, 2023:45-46 |
| [1] | ZHANG Li, YANG Xin-guo, WANG Lei, ZHANG Xue, QU Wen-jie, LIU Rong-guo, ZHANG Bo. Spatial Associations Analysis of Species in Sand-Fixing Community of Caragana korshinskii Based on Point Pattern [J]. Acta Agrestia Sinica, 2025, 33(6): 1886-1893. |
| [2] | LUO Lai-kai, YIN Ming-yue, ZHU Ling, CHENG Ying, YANG Yan-fang, TAN Kai, ZHAO Kai. Herbaceous Plant Diversity and Environmental Interpretation in Different Habitats: A Case Study of The Anqing Section of The Yangtze River [J]. Acta Agrestia Sinica, 2025, 33(6): 1934-1946. |
| [3] | WANG Xiu-hong, ZHU Xiao-tian, ZHANG Hui-hui, LIU Zhen-ling, WANG Bao-ping, ZHOU Jing, ZHANG Ji-tao, SHI Xiang-yuan. Effects of the Thickness of Biogas Residue Substrate on the Formation and Transplanting Effect of Tall Tescue Sod [J]. Acta Agrestia Sinica, 2025, 33(5): 1686-1693. |
| [4] | LI Lin, XU Ming-zhi, LIU Yan-rong, ZHANG Wan-jun. Codon Bias Analysis of Medicago Genome [J]. Acta Agrestia Sinica, 2024, 32(9): 2695-2706. |
| [5] | MAO Jia-jing, LU Shuang, FEI Xing-yu, DU Yang, XU Li-xin. Clone and Functional Analysis of CiGL2 Gene in Cichorium intybus [J]. Acta Agrestia Sinica, 2024, 32(8): 2366-2373. |
| [6] | SONG Ge, DENG Ya-nan, LI Ya-ning, YUE Fu-sen, YAN Xue, YAN Shan-chun. Allelopathic Effects of Essential Oil from Quercus mongolica Deciduous Leaves on Seed Germination and Seedling Growth of Four Herbaceous Plants [J]. Acta Agrestia Sinica, 2024, 32(11): 3522-3529. |
| [7] | XU Hong-da, HE Wei-hai, ZHONG Xiu-juan, LU Yao-dong, CHEN Yong, ZHANG Ju-ming, LIU Tian-zeng. Study on the Response Mechanism of ‘Lanyin No. III’ Zoysiagrass to Irrigation and Fertilizer Coupling [J]. Acta Agrestia Sinica, 2024, 32(10): 3252-3261. |
| [8] | ZHANG Zhao, NIE Yu-ting, CUI Kai-lun, LYU Yan-zhen, YAN Hui-fang. Research Progress on the Function of Melatonin in Regulating Growth, Development and Stress Resistance in Herbaceous Species [J]. Acta Agrestia Sinica, 2023, 31(9): 2571-2581. |
| [9] | MA Cheng-ze, CUI Hui-ting, HU Qian-nan, WANG Lu-yu, JIA Fang, WANG Chu, QIAO Jia-yue, LI Yue, SUN Yan. Research Progress on Regeneration System of Turfgrass [J]. Acta Agrestia Sinica, 2023, 31(8): 2241-2252. |
| [10] | HU Guang-de, ZHOU Ji-qiang, DA Jun-shan, LEI Long-ju, ZHAO Chang-xing, LI Chao-nan, ZHOU Zi-qiang, LIU Jin-rong. Relationship Between Understory Plant Diversity and Soil Properties of Different Forests in Sandy Land of Jinta [J]. Acta Agrestia Sinica, 2023, 31(6): 1834-1841. |
| [11] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bin-chen, ZHANG Dai, CUI Ran-ran, HUANG Xian, MA Ning. Analysis of Influencing Factors on the Understory Herbaceous Plant Diversity of Platycladus orientalis Forest in Beijing Mountainous Areas [J]. Acta Agrestia Sinica, 2022, 30(8): 2199-2206. |
| [12] | LIU Xi-ran, LI Zhi-hong, JIANG Lu, NIE Ying-bin. Study on the Synchronization between Rapid Improvement of Soda Alkaline Soil and Lawn Planting [J]. Acta Agrestia Sinica, 2022, 30(12): 3302-3307. |
| [13] | XU Zheng, XU Qian, LIU Ming-xi, XIANG Zuo-xiang. Effect of ‘Henace’ Herbicide on the Spring Transition of Zoysia japonica ‘Lantai No.3’ Overseeding Turfgrass [J]. Acta Agrestia Sinica, 2021, 29(3): 603-609. |
| [14] | LI Yu-ying, LIU Na, JING Ze-yao, WEN Wei, CAO Lei, XIA Fang-shan, ZHU hui-sen. Effect of Extract from Artemisia annua on Seed Germination and Seedling Growth of Four Species of Turfgrass [J]. Acta Agrestia Sinica, 2020, 28(5): 1285-1293. |
| [15] | CUI Hui-ting, SUN Xi-nuo, MA Cheng-ze, HU Qian-nan, SUN Yan. Advances in Applications of Metabolomics Technology in Stress Resistance of Forage and Turfgrass [J]. Acta Agrestia Sinica, 2020, 28(4): 873-880. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||